On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point
|
|
Creator |
Chuchman, I.
|
|
Description |
In this paper we study the semigroup IC(I,[a]) (IO(I,[a])) of closed (open) connected partial homeomorphisms of the unit interval I with a fixed point a∈I. We describe left and right ideals of IC(I,[0]) and the Green's relations on IC(I,[0]). We show that the semigroup IC(I,[0]) is bisimple and every non-trivial congruence on IC(I,[0]) is a group congruence. Also we prove that the semigroup IC(I,[0]) is isomorphic to the semigroup IO(I,[0]) and describe the structure of a semigroup II(I,[0])=IC(I,[0])⊔IO(I,[0]). As a corollary we get structures of semigroups IC(I,[a]) and IO(I,[a]) for an interior point a∈I.
|
|
Date |
2019-06-16T05:51:42Z
2019-06-16T05:51:42Z 2011 |
|
Type |
Article
|
|
Identifier |
On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point / I. Chuchman // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 38–52. — Бібліогр.: 10 назв. — англ.
1726-3255 2010 Mathematics Subject Classification:20M20,54H15, 20M18. http://dspace.nbuv.gov.ua/handle/123456789/154866 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|