Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
|
|
Creator |
Hannusch, C.
Lakatos, P. |
|
Description |
The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables us to find a self-dual code for even m=2n in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes.
|
|
Date |
2019-06-16T10:56:43Z
2019-06-16T10:56:43Z 2016 |
|
Type |
Article
|
|
Identifier |
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes / C. Hannusch, P. Lakatos // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 59-68. — Бібліогр.: 15 назв. — англ.
1726-3255 2010 MSC:94B05, 11T71, 20C05. http://dspace.nbuv.gov.ua/handle/123456789/155203 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|