Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
Vernadsky National Library of Ukraine
Переглянути архів Інформація| Поле | Співвідношення | |
| Title | Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes | |
| Creator | Hannusch, C. Lakatos, P. | |
| Description | The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m.  The group algebra approach enables us to find a self-dual code for even m=2n in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes. | |
| Date | 2019-06-16T10:56:43Z 2019-06-16T10:56:43Z 2016 | |
| Type | Article | |
| Identifier | Construction of self-dual binary  [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes / C. Hannusch, P. Lakatos // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 59-68. — Бібліогр.: 15 назв. — англ. 1726-3255 2010 MSC:94B05, 11T71, 20C05. http://dspace.nbuv.gov.ua/handle/123456789/155203 | |
| Language | en | |
| Relation | Algebra and Discrete Mathematics | |
| Publisher | Інститут прикладної математики і механіки НАН України | |
