Запис Детальніше

The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs
 
Creator Pawlik, B.T.
 
Description Base (minimal generating set) of the Sylow 2-subgroup of S₂n is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup Pn(2) of S₂n acts by conjugation on the set of all bases. In presented paper the~stabilizer of the set of all diagonal bases in Sn(2) is characterized and the orbits of the action are determined. It is shown that every orbit contains exactly 2n−1 diagonal bases and 2²n−²n bases at all. Recursive construction of Cayley graphs of Pn(2) on diagonal bases (n≥2) is proposed.
 
Date 2019-06-16T14:38:23Z
2019-06-16T14:38:23Z
2016
 
Type Article
 
Identifier The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs / B.T. Pawlik // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 264–281. — Бібліогр.: 6 назв. — англ.
1726-3255
2010 MSC:20B35, 20D20, 20E22, 05C25.
http://dspace.nbuv.gov.ua/handle/123456789/155248
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України