Uniform ball structures
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Uniform ball structures
|
|
Creator |
Protasov, I.V.
|
|
Description |
A ball structure is a triple B = (X, P, B), where X, P are nonempty sets and, for all x ∈ X, α ∈ P, B(x, α) is a subset of X, x ∈ B(x, α), which is called a ball of radius α around x. We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topological spaces. We show that every uniform ball structure can be approximated by metrizable ball structures. We also define two types of ball structures closed to being metrizable, and describe the extremal elements in the classes of ball structures with fixed support X. |
|
Date |
2019-06-16T15:32:41Z
2019-06-16T15:32:41Z 2003 |
|
Type |
Article
|
|
Identifier |
Uniform ball structures / I.V. Protasov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 93–102. — Бібліогр.: 2 назв. — англ.
1726-3255 2001 Mathematics Subject Classification: 03E99, 54A05, 54E15. http://dspace.nbuv.gov.ua/handle/123456789/155285 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|