Запис Детальніше

Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II
 
Creator Chernousova, Zh.T.
Dokuchaev, M.A.
Khibina, M.A.
Kirichenko, V.V.
Miroshnichenko, S.G.
Zhuravlev, V.N.
 
Description The main concept of this part of the paper is
that of a reduced exponent matrix and its quiver, which is strongly
connected and simply laced. We give the description of quivers of
reduced Gorenstein exponent matrices whose number s of vertices
is at most 7. For 2 ≤ 6 s ≤ 5 we have that all adjacency matrices of
such quivers are multiples of doubly stochastic matrices. We prove
that for any permutation σ on n letters without fixed elements
there exists a reduced Gorenstein tiled order Λ with σ(ε) = σ.
We show that for any positive integer k there exists a Gorenstein
tiled order Λk with inΛk = k. The adjacency matrix of any cyclic
Gorenstein order Λ is a linear combination of powers of a permutation matrix Pσ with non-negative coefficients, where σ = σ(Λ).
If A is a noetherian prime semiperfect semidistributive ring of a
finite global dimension, then Q(A) be a strongly connected simply
laced quiver which has no loops.
 
Date 2019-06-17T11:08:34Z
2019-06-17T11:08:34Z
2003
 
Type Article
 
Identifier Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 47–86. — Бібліогр.: 44 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16P40, 16G10.
http://dspace.nbuv.gov.ua/handle/123456789/155712
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України