Запис Детальніше

N – real fields

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title N – real fields
 
Creator Feigelstock, S.
 
Description A field F is n-real if −1 is not the sum of n
squares in F. It is shown that a field F is m-real if and only
if rank (AAt
) = rank (A) for every n × m matrix A with entries
from F. An n-real field F is n-real closed if every proper algebraic
extension of F is not n-real. It is shown that if a 3-real field F
is 2-real closed, then F is a real closed field. For F a quadratic
extension of the field of rational numbers, the greatest integer n
such that F is n-real is determined.
 
Date 2019-06-17T10:42:57Z
2019-06-17T10:42:57Z
2003
 
Type Article
 
Identifier N – real fields / S. Feigelstock // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 1–6. — Бібліогр.: 8 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 12D15.
http://dspace.nbuv.gov.ua/handle/123456789/155693
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України