N – real fields
Vernadsky National Library of Ukraine
Переглянути архів Інформація| Поле | Співвідношення | |
| Title |
N – real fields
|
|
| Creator |
Feigelstock, S.
|
|
| Description |
A field F is n-real if −1 is not the sum of n squares in F. It is shown that a field F is m-real if and only if rank (AAt ) = rank (A) for every n × m matrix A with entries from F. An n-real field F is n-real closed if every proper algebraic extension of F is not n-real. It is shown that if a 3-real field F is 2-real closed, then F is a real closed field. For F a quadratic extension of the field of rational numbers, the greatest integer n such that F is n-real is determined. |
|
| Date |
2019-06-17T10:42:57Z
2019-06-17T10:42:57Z 2003 |
|
| Type |
Article
|
|
| Identifier |
N – real fields / S. Feigelstock // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 1–6. — Бібліогр.: 8 назв. — англ.
1726-3255 2000 Mathematics Subject Classification: 12D15. http://dspace.nbuv.gov.ua/handle/123456789/155693 |
|
| Language |
en
|
|
| Relation |
Algebra and Discrete Mathematics
|
|
| Publisher |
Інститут прикладної математики і механіки НАН України
|
|