Запис Детальніше

A note on Hall S-permutably embedded subgroups of finite groups

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title A note on Hall S-permutably embedded subgroups of finite groups
 
Creator Sinitsa, D.
 
Description Let G be a finite group. Recall that a subgroup A of G is said to permute with a subgroup B if AB=BA. A subgroup A of G is said to be S-quasinormal or S-permutable in G if A permutes with all Sylow subgroups of G. Recall also that HsG is the S-permutable closure of H in G, that is, the intersection of all such S-permutable subgroups of G which contain H. We say that H is Hall S-permutably embedded in G if H is a Hall subgroup of the S-permutable closure HsG of H in G. We prove that the following conditions are equivalent: (1) every subgroup of G is Hall S-permutably embedded in G; (2) the nilpotent residual GN of G is a Hall cyclic of square-free order subgroup of G; (3) G=D⋊M is a split extension of a cyclic subgroup D of square-free order by a nilpotent group M, where M and D are both Hall subgroups of G.
 
Date 2019-06-17T18:59:06Z
2019-06-17T18:59:06Z
2017
 
Type Article
 
Identifier A note on Hall S-permutably embedded subgroups of finite groups / D. Sinitsa // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 305-311. — Бібліогр.: 9 назв. — англ.
1726-3255
2010 MSC:20D10, 20D15, 20D30.
http://dspace.nbuv.gov.ua/handle/123456789/156024
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України