On divergence and sums of derivations
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On divergence and sums of derivations
|
|
Creator |
Chapovsky, E.
Shevchyk, O. |
|
Description |
Let K be an algebraically closed field of characteristic zero and A a field of algebraic functions in n variables over K. (i.e. A is a finite dimensional algebraic extension of the field K(x1,…,xn) ). If D is a K-derivation of A, then its divergence divD is an important geometric characteristic of D (D can be considered as a vector field with coefficients in A). A relation between expressions of divD in different transcendence bases of A is pointed out. It is also proved that every divergence-free derivation D on the polynomial ring K[x,y,z] is a sum of at most two jacobian derivation.
|
|
Date |
2019-06-18T10:24:34Z
2019-06-18T10:24:34Z 2017 |
|
Type |
Article
|
|
Identifier |
On divergence and sums of derivations / E. Chapovsky, O. Shevchyk // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 99-105. — Бібліогр.: 5 назв. — англ.
1726-3255 2010 MSC:Primary 13N15; Secondary 13A99, 17B66. http://dspace.nbuv.gov.ua/handle/123456789/156256 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|