Запис Детальніше

On divergence and sums of derivations

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title On divergence and sums of derivations
 
Creator Chapovsky, E.
Shevchyk, O.
 
Description Let K be an algebraically closed field of characteristic zero and A a field of algebraic functions in n variables over K. (i.e. A is a finite dimensional algebraic extension of the field K(x1,…,xn) ). If D is a K-derivation of A, then its divergence divD is an important geometric characteristic of D (D can be considered as a vector field with coefficients in A). A relation between expressions of divD in different transcendence bases of A is pointed out. It is also proved that every divergence-free derivation D on the polynomial ring K[x,y,z] is a sum of at most two jacobian derivation.
 
Date 2019-06-18T10:24:34Z
2019-06-18T10:24:34Z
2017
 
Type Article
 
Identifier On divergence and sums of derivations / E. Chapovsky, O. Shevchyk // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 99-105. — Бібліогр.: 5 назв. — англ.
1726-3255
2010 MSC:Primary 13N15; Secondary 13A99, 17B66.
http://dspace.nbuv.gov.ua/handle/123456789/156256
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України