On divergence and sums of derivations
Vernadsky National Library of Ukraine
Переглянути архів Інформація| Поле | Співвідношення | |
| Title | 
															On divergence and sums of derivations
					 | 
		|
| Creator | 
															Chapovsky, E.
					 Shevchyk, O.  | 
		|
| Description | 
															Let K be an algebraically closed   field of characteristic zero and A  a field of algebraic functions in n variables over K. (i.e. A is a finite dimensional algebraic extension of the field K(x1,…,xn) ). If D is a K-derivation of A, then its divergence divD is an important geometric  characteristic of  D (D can be considered as a vector field with coefficients in A). A relation between expressions of divD in different transcendence bases of   A is pointed out. It is also proved that every divergence-free derivation D on the polynomial ring K[x,y,z] is a sum of at most two jacobian derivation.
					 | 
		|
| Date | 
															2019-06-18T10:24:34Z
					 2019-06-18T10:24:34Z 2017  | 
		|
| Type | 
															Article
					 | 
		|
| Identifier | 
															On divergence and sums of derivations / E. Chapovsky, O. Shevchyk // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 99-105. — Бібліогр.: 5 назв. — англ.
					 1726-3255 2010 MSC:Primary 13N15; Secondary 13A99, 17B66. http://dspace.nbuv.gov.ua/handle/123456789/156256  | 
		|
| Language | 
															en
					 | 
		|
| Relation | 
															Algebra and Discrete Mathematics
					 | 
		|
| Publisher | 
															Інститут прикладної математики і механіки НАН України
					 | 
		|