Запис Детальніше

On wildness of idempotent generated algebras associated with extended Dynkin diagrams

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title On wildness of idempotent generated algebras associated with extended Dynkin diagrams
 
Creator Bondarenko, V.M.
 
Description Let Λ denote an extended Dynkin diagram with
vertex set Λ0 = {0, 1,... ,n}. For a vertex i, denote by S(i) the set
of vertices j such that there is an edge joining i and j; one assumes
the diagram has a unique vertex p, say p = 0, with |S(p)| = 3.
Further, denote by Λ \ 0 the full subgraph of Λ with vertex set
Λ0 \ {0}. Let ∆ = (δi
|i ∈ Λ0) ∈ Z
|Λ0| be an imaginary root of Λ,
and let k be a field of arbitrary characteristic (with unit element
1). We prove that if Λ is an extended Dynkin diagram of type
D₄, E₆ or E₇, then the k-algebra Qk(Λ, ∆) with generators ei
,
i ∈ Λ0 \ {0}, and relations e
2
i = ei
, eiej = 0 if i and j 6= i belong to
the same connected component of Λ \ 0, and Pn
i=1 δi ei = δ01 has
wild representation time.
 
Date 2019-06-18T14:12:06Z
2019-06-18T14:12:06Z
2004
 
Type Article
 
Identifier On wildness of idempotent generated algebras associated with extended Dynkin diagrams / V.M. Bondarenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 1–11. — Бібліогр.: 4 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16G60; 15A21, 46K10, 46L05.
http://dspace.nbuv.gov.ua/handle/123456789/156457
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України