On wildness of idempotent generated algebras associated with extended Dynkin diagrams
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On wildness of idempotent generated algebras associated with extended Dynkin diagrams
|
|
Creator |
Bondarenko, V.M.
|
|
Description |
Let Λ denote an extended Dynkin diagram with vertex set Λ0 = {0, 1,... ,n}. For a vertex i, denote by S(i) the set of vertices j such that there is an edge joining i and j; one assumes the diagram has a unique vertex p, say p = 0, with |S(p)| = 3. Further, denote by Λ \ 0 the full subgraph of Λ with vertex set Λ0 \ {0}. Let ∆ = (δi |i ∈ Λ0) ∈ Z |Λ0| be an imaginary root of Λ, and let k be a field of arbitrary characteristic (with unit element 1). We prove that if Λ is an extended Dynkin diagram of type D₄, E₆ or E₇, then the k-algebra Qk(Λ, ∆) with generators ei , i ∈ Λ0 \ {0}, and relations e 2 i = ei , eiej = 0 if i and j 6= i belong to the same connected component of Λ \ 0, and Pn i=1 δi ei = δ01 has wild representation time. |
|
Date |
2019-06-18T14:12:06Z
2019-06-18T14:12:06Z 2004 |
|
Type |
Article
|
|
Identifier |
On wildness of idempotent generated algebras associated with extended Dynkin diagrams / V.M. Bondarenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 1–11. — Бібліогр.: 4 назв. — англ.
1726-3255 2000 Mathematics Subject Classification: 16G60; 15A21, 46K10, 46L05. http://dspace.nbuv.gov.ua/handle/123456789/156457 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|