Запис Детальніше

Correct classes of modules

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Correct classes of modules
 
Creator Wisbauer, R.
 
Description For a ring R, call a class C of R-modules (pure-)
mono-correct if for any M, N ∈ C the existence of (pure) monomorphisms M → N and N → M implies M ≃ N. Extending results
and ideas of Rososhek from rings to modules, it is shown that, for
an R-module M, the class σ[M] of all M-subgenerated modules
is mono-correct if and only if M is semisimple, and the class of
all weakly M-injective modules is mono-correct if and only if M is
locally noetherian. Applying this to the functor ring of R-Mod provides a new proof that R is left pure semisimple if and only if R-Mod
is pure-mono-correct. Furthermore, the class of pure-injective Rmodules is always pure-mono-correct, and it is mono-correct if and
only if R is von Neumann regular. The dual notion epi-correctness
is also considered and it is shown that a ring R is left perfect if
and only if the class of all flat R-modules is epi-correct. At the end
some open problems are stated.
 
Date 2019-06-18T17:44:23Z
2019-06-18T17:44:23Z
2004
 
Type Article
 
Identifier Correct classes of modules / R. Wisbauer // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 106–118. — Бібліогр.: 18 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16D70, 16P40, 16D60.
http://dspace.nbuv.gov.ua/handle/123456789/156603
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України