Gorenstein matrices
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Gorenstein matrices
|
|
Creator |
Dokuchaev, M.A.
Kirichenko, V.V. Zelensky, A.V. Zhuravlev, V.N. |
|
Description |
Let A = (aij ) be an integral matrix. We say that A is (0, 1, 2)-matrix if aij ∈ {0, 1, 2}. There exists the Gorenstein (0, 1, 2)-matrix for any permutation σ on the set {1, . . . , n} without fixed elements. For every positive integer n there exists the Gorenstein cyclic (0, 1, 2)-matrix An such that inx An = 2. If a Latin square Ln with a first row and first column (0, 1, . . . n − 1) is an exponent matrix, then n = 2m and Ln is the Cayley table of a direct product of m copies of the cyclic group of order 2. Conversely, the Cayley table Em of the elementary abelian group Gm = (2)×. . .×(2) of order 2 m is a Latin square and a Gorenstein symmetric matrix with first row (0, 1, . . . , 2 m − 1) and σ(Em) = 1 2 3 . . . 2 m − 1 2m 2 m 2 m − 1 2m − 2 . . . 2 1 . |
|
Date |
2019-06-18T17:50:15Z
2019-06-18T17:50:15Z 2005 |
|
Type |
Article
|
|
Identifier |
Gorenstein matrices / M.A. Dokuchaev, V.V. Kirichenko, A.V. Zelensky, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 8–29. — Бібліогр.: 24 назв. — англ.
1726-3255 2000 Mathematics Subject Classification: 16P40; 16G10. http://dspace.nbuv.gov.ua/handle/123456789/156609 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|