Miniversal deformations of chains of linear mappings
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Miniversal deformations of chains of linear mappings
|
|
Creator |
Gaiduk, T.N.
Sergeichuk, V.V. Zharko, N.A. |
|
Description |
V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings V₁ V₂ · · · Vt , where all Vi are complex or real vector spaces and each line denotes −→ or ←−. |
|
Date |
2019-06-18T17:30:09Z
2019-06-18T17:30:09Z 2005 |
|
Type |
Article
|
|
Identifier |
Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ.
1726-3255 2000 Mathematics Subject Classification: 15A21; 16G20. http://dspace.nbuv.gov.ua/handle/123456789/156589 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|