Diagonalizability theorems for matrices over rings with finite stable range
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Diagonalizability theorems for matrices over rings with finite stable range
|
|
Creator |
Zabavsky, B.
|
|
Description |
We construct the theory of diagonalizability for matrices over Bezout ring with finite stable range. It is shown that every commutative Bezout ring with compact minimal prime spectrum is Hermite. It is also shown that a principal ideal domain with stable range 1 is Euclidean domain, and every semilocal principal ideal domain is Euclidean domain. It is proved that every matrix over an elementary divisor ring can be reduced to "almost" diagonal matrix by elementary transformations. |
|
Date |
2019-06-18T17:49:22Z
2019-06-18T17:49:22Z 2005 |
|
Type |
Article
|
|
Identifier |
Diagonalizability theorems for matrices over rings with finite stable range / B. Zabavsky // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 151–165. — Бібліогр.: 35 назв. — англ.
1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/156607 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|