Запис Детальніше

On the difference between the spectral radius and the maximum degree of graphs

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title On the difference between the spectral radius and the maximum degree of graphs
 
Creator Oboudi, M.R.
 
Description Let G be a graph with the eigenvalues λ₁(G)≥⋯≥λn(G). The largest eigenvalue of G, λ₁(G), is called the spectral radius of G. Let β(G)=Δ(G)−λ₁(G), where Δ(G) is the maximum degree of vertices of G. It is known that if G is a connected graph, then β(G)≥0 and the equality holds if and only if G is regular. In this paper we study the maximum value and the minimum value of β(G) among all non-regular connected graphs. In particular we show that for every tree T with n≥3 vertices, n−1−√(n−1) ≥ β(T) ≥ 4sin²(π/(2n+2)). Moreover, we prove that in the right side the equality holds if and only if T≅Pn and in the other side the equality holds if and only if T≅Sn, where Pn and Sn are the path and the star on n vertices, respectively.
 
Date 2019-06-18T18:15:53Z
2019-06-18T18:15:53Z
2017
 
Type Article
 
Identifier On the difference between the spectral radius and the maximum degree of graphs / M.R. Oboudi // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 302-307. — Бібліогр.: 17 назв. — англ.
1726-3255
2010 MSC:05C31, 05C50, 15A18.
http://dspace.nbuv.gov.ua/handle/123456789/156636
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України