On strongly graded Gorestein orders
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On strongly graded Gorestein orders
|
|
Creator |
Theohari-Apostolidi, Th.
Vavatsoulas, H. |
|
Description |
Let G be a finite group and let Λ = ⊕g∈GΛg be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, Λ is an R-order in a separable K-algebra such that the algebra Λ1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order. Moreover, we prove that the induction functor ind : ModΛH → ModΛ defined in Section 3, for a subgroup H of G, commutes with the standard duality functor. |
|
Date |
2019-06-18T17:55:03Z
2019-06-18T17:55:03Z 2005 |
|
Type |
Article
|
|
Identifier |
On strongly graded Gorestein orders / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 80–89. — Бібліогр.: 11 назв. — англ.
1726-3255 2000 Mathematics Subject Classification: 16H05, 16G30, 16S35, 16G10, 16W50. http://dspace.nbuv.gov.ua/handle/123456789/156618 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|