Запис Детальніше

On strongly graded Gorestein orders

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title On strongly graded Gorestein orders
 
Creator Theohari-Apostolidi, Th.
Vavatsoulas, H.
 
Description Let G be a finite group and let Λ = ⊕g∈GΛg be a
strongly G-graded R-algebra, where R is a commutative ring with
unity. We prove that if R is a Dedekind domain with quotient field
K, Λ is an R-order in a separable K-algebra such that the algebra
Λ1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order.
Moreover, we prove that the induction functor ind : ModΛH →
ModΛ defined in Section 3, for a subgroup H of G, commutes with
the standard duality functor.
 
Date 2019-06-18T17:55:03Z
2019-06-18T17:55:03Z
2005
 
Type Article
 
Identifier On strongly graded Gorestein orders / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 80–89. — Бібліогр.: 11 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16H05, 16G30, 16S35, 16G10, 16W50.
http://dspace.nbuv.gov.ua/handle/123456789/156618
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України