Запис Детальніше

Models of temporal dependencies for a probabilistic knowledge base

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Models of temporal dependencies for a probabilistic knowledge base
 
Creator Chala, O.
 
Contributor Kharkiv National University of Radio Electronics
 
Subject temporal dependencies
temporal rule
knowledge base
information control system
event
attribute
event log
 
Description The article presents models of temporal
dependences for constructing probabilistic temporal rules in the
Markov Logical Networks. Such rules describe the relations
between the states of a control object and taking account the
possibility of integrating different approaches of management
according to the paradigm of “Enterprise 2.0” knowledge
sharing.
The proposed models define constraints and conditions for
changing the states of a control object, which allows predicting
possible variants of its behavior in relation to the current state
and providing decision support based on a choice of the most
likely variants.
 
Date 2019-06-18T12:03:41Z
2019-06-18T12:03:41Z
2018-06-18
2018-06-18
 
Type Article
 
Identifier Chala O. Models of temporal dependencies for a probabilistic knowledge base / O. Chala // Econtechmod. — Lublin, 2018. — Vol 7. — No 3. — P. 53–58.
2084-5715
http://ena.lp.edu.ua:8080/handle/ntb/45127
Chala O. Models of temporal dependencies for a probabilistic knowledge base / O. Chala // Econtechmod. — Lublin, 2018. — Vol 7. — No 3. — P. 53–58.
 
Language en
 
Relation Econtechmod, 3 (7), 2018
https://doi
1. Bughin J. 2008. The rise of enterprise 2.0. Journal of Direct, Data and Digital Marketing Practice, 9(3),251–259.
2. Kalynychenko O., Chalyi S., Bodyanskiy Y., Golian V., Golian N. 2013. Implementation of search mechanism for implicit dependences in process mining. 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems. Available:https://doi. org/10.1109/idaacs.2013.6662.
3. Christidis K., Mentzas G., Apostolou D. 2012. Using latent topics to enhance search andrecommendation in Enterprise Social Software. Expert Systems with Applications, 39(10), 9297–9307.
4. Vom Brocke J. 2015. Handbook on Business Process Management 1. Introduction, Methods, and Information Systems. Springer-Verlag Berlin Heidelberg, p. 709 doi:10.1007/978-3-642-45100-3
5. Shin J., Wu S., Wang F., De Sa C. Zhang С., R´e С. 2015. Incremental Knowledge Base Construction Using DeepDive. 41 th International Conference on Very Large Data Bases (VLDB).Vol. 8(11).
6. Niu F., Zhang C., Re C. 2012. DeepDive: Webscale Knowledge-base Construction using Statistical Learning and Inference. VLDS, 25–28.
7. Chalyi S., Levykin I., Petrychenko A. and Bogatov I. 2018. Causality-based model checking in business process management tasks. Proc. IEEE 9th International Conference on Dependable Systems, Services and Technologies DESSERT’2018. Ukraine, Kyiv. May 24–27, 478 – 483.
8. Van der Aalst W. M. P. 2014. Process Mining in the Large. A Tutorial. Business Intelligence. Springer Science + Business Media, 33–76.doi:10.1007/978-3-319-05461-2_2
9. Gronau N., Thim C., Ullrich A., Weber E. 2016. A Proposal to Model Knowledge in Knowledge- Intensive Business Processes. BMSD 2016: 6th Int. Symposium on Business Modeling and Software Design. doi:10.5220/0006222600980103.
10. Richardson M., Domingos P. 2006. Markov logic networks. Machine learning, 62(1-2), 107–136.doi: 10.1007/s10994- 006-8633-8.
11. Lowd D., Domingos P. 2007. Efficient weight learning for Markov logic networks. European Conference on Principles of Data Mining and Knowledge Discovery. Knowledge discovery in databases: PKDD 2007.
12. Levykin V., Chala O. 2018. Method of automated construction and expansion of the knowledge base of the business process management system. EUREKA: Physics and Engineering, 4, 29–35.
13. Levykin V., Chala O. 2018. Method of determining weights of temporal rules in markov logic network for building knowledge base in information control system. EUREKA: Physics and Engineering, 5,29–35.
14. Christian W. Gunther, Eric Verbeek. 2014. XES Standard Definition. 24.
15. Beskorovainyi V. V., Berezovskyi H. 2017. Identification of preferences in decision support systems. Econtechmod. An international quarterly journal. Vol. 6, No. 4, 15–20.
1. Bughin J. 2008. The rise of enterprise 2.0. Journal of Direct, Data and Digital Marketing Practice, 9(3),251–259.
2. Kalynychenko O., Chalyi S., Bodyanskiy Y., Golian V., Golian N. 2013. Implementation of search mechanism for implicit dependences in process mining. 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems. Available:https://doi. org/10.1109/idaacs.2013.6662.
3. Christidis K., Mentzas G., Apostolou D. 2012. Using latent topics to enhance search andrecommendation in Enterprise Social Software. Expert Systems with Applications, 39(10), 9297–9307.
4. Vom Brocke J. 2015. Handbook on Business Process Management 1. Introduction, Methods, and Information Systems. Springer-Verlag Berlin Heidelberg, p. 709 doi:10.1007/978-3-642-45100-3
5. Shin J., Wu S., Wang F., De Sa C. Zhang S., R´e P. 2015. Incremental Knowledge Base Construction Using DeepDive. 41 th International Conference on Very Large Data Bases (VLDB).Vol. 8(11).
6. Niu F., Zhang C., Re P. 2012. DeepDive: Webscale Knowledge-base Construction using Statistical Learning and Inference. VLDS, 25–28.
7. Chalyi S., Levykin I., Petrychenko A. and Bogatov I. 2018. Causality-based model checking in business process management tasks. Proc. IEEE 9th International Conference on Dependable Systems, Services and Technologies DESSERT’2018. Ukraine, Kyiv. May 24–27, 478 – 483.
8. Van der Aalst W. M. P. 2014. Process Mining in the Large. A Tutorial. Business Intelligence. Springer Science + Business Media, 33–76.doi:10.1007/978-3-319-05461-2_2
9. Gronau N., Thim C., Ullrich A., Weber E. 2016. A Proposal to Model Knowledge in Knowledge- Intensive Business Processes. BMSD 2016: 6th Int. Symposium on Business Modeling and Software Design. doi:10.5220/0006222600980103.
10. Richardson M., Domingos P. 2006. Markov logic networks. Machine learning, 62(1-2), 107–136.doi: 10.1007/s10994- 006-8633-8.
11. Lowd D., Domingos P. 2007. Efficient weight learning for Markov logic networks. European Conference on Principles of Data Mining and Knowledge Discovery. Knowledge discovery in databases: PKDD 2007.
12. Levykin V., Chala O. 2018. Method of automated construction and expansion of the knowledge base of the business process management system. EUREKA: Physics and Engineering, 4, 29–35.
13. Levykin V., Chala O. 2018. Method of determining weights of temporal rules in markov logic network for building knowledge base in information control system. EUREKA: Physics and Engineering, 5,29–35.
14. Christian W. Gunther, Eric Verbeek. 2014. XES Standard Definition. 24.
15. Beskorovainyi V. V., Berezovskyi H. 2017. Identification of preferences in decision support systems. Econtechmod. An international quarterly journal. Vol. 6, No. 4, 15–20.
 
Rights © Copyright by Lviv Polytechnic National University 2018
© Copyright by Polish Academy of Sciences 2018
© Copyright by University of Engineering and Economics in Rzeszów 2018
© Copyright by University of Life Sciences in Lublin 2018
 
Format 53-58
6
application/pdf
image/png
 
Coverage Lublin