Запис Детальніше

Machine Learning in Classification Time Series with Fractal Properties

Електронного архіву Харківського національного університету радіоелектроніки (Open Access Repository of KHNURE)

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Machine Learning in Classification Time Series with Fractal Properties
 
Creator Кіріченко, Л. О.
Булах, В. А.
Радівілова, Т. А.
 
Subject fractal time series
binomial stochastic cascade
classification of time series
Hurst exponent
random forest
detecting distributed denial-of-service attacks
 
Description The article presents a novel method of fractal time series classification by meta-algorithms
based on decision trees. The classification objects are fractal time series. For modeling, binomial
stochastic cascade processes are chosen. Each class that was singled out unites model time series with
the same fractal properties. Numerical experiments demonstrate that the best results are obtained
by the random forest method with regression trees. A comparative analysis of the classification
approaches, based on the random forest method, and traditional estimation of self-similarity degree
are performed. The results show the advantage of machine learning methods over traditional
time series evaluation. The results were used for detecting denial-of-service (DDoS) attacks and
demonstrated a high probability of detection.
 
Date 2019-06-19T08:43:01Z
2019-06-19T08:43:01Z
2019
 
Type Article
 
Identifier Kirichenko L. Machine Learning in Classification Time Series with Fractal Properties / L. Kirichenko, V. Bulakh, T. Radivilova // Data. – 2019. – vol.4(1) 5. – P. 1–13.
http://openarchive.nure.ua/handle/document/9453
 
Language en