Arithmetic properties of exceptional lattice paths
Vernadsky National Library of Ukraine
Переглянути архів Інформація| Поле | Співвідношення | |
| Title | Arithmetic properties of exceptional lattice paths | |
| Creator | Rump, W. | |
| Description | For a fixed real number ρ > 0, let L be an affine line of slope ρ ⁻¹ in R ² . We show that the closest approximation of L by a path P in Z ² is unique, except in one case, up to integral translation. We study this exceptional case. For irrational ρ, the projection of P to L yields two quasicrystallographic tilings in the sense of Lunnon and Pleasants [5]. If ρ satisfies an equation x ² = mx + 1 with m ∈ Z, both quasicrystals are mapped to each other by a substitution rule. For rational ρ, we characterize the periodic parts of P by geometric and arithmetic properties, and exhibit a relationship to the hereditary algebras Hρ(K) over a field K introduced in a recent proof of a conjecture of Ro˘ıter. | |
| Date | 2019-06-20T03:11:02Z 2019-06-20T03:11:02Z 2006 | |
| Type | Article | |
| Identifier | Arithmetic properties of exceptional lattice paths / W. Rump // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 101–118. — Бібліогр.: 16 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 05B30, 11B50; 52C35, 11A0 http://dspace.nbuv.gov.ua/handle/123456789/157386 | |
| Language | en | |
| Relation | Algebra and Discrete Mathematics | |
| Publisher | Інститут прикладної математики і механіки НАН України | |
