Запис Детальніше

Arithmetic properties of exceptional lattice paths

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Arithmetic properties of exceptional lattice paths
 
Creator Rump, W.
 
Description For a fixed real number ρ > 0, let L be an affine
line of slope ρ
⁻¹
in R
²
. We show that the closest approximation of
L by a path P in Z
²
is unique, except in one case, up to integral
translation. We study this exceptional case. For irrational ρ, the
projection of P to L yields two quasicrystallographic tilings in the
sense of Lunnon and Pleasants [5]. If ρ satisfies an equation x
² =
mx + 1 with m ∈ Z, both quasicrystals are mapped to each other
by a substitution rule. For rational ρ, we characterize the periodic
parts of P by geometric and arithmetic properties, and exhibit
a relationship to the hereditary algebras Hρ(K) over a field K
introduced in a recent proof of a conjecture of Ro˘ıter.
 
Date 2019-06-20T03:11:02Z
2019-06-20T03:11:02Z
2006
 
Type Article
 
Identifier Arithmetic properties of exceptional lattice paths / W. Rump // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 101–118. — Бібліогр.: 16 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 05B30, 11B50; 52C35, 11A0
http://dspace.nbuv.gov.ua/handle/123456789/157386
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України