Запис Детальніше

On Frobenius full matrix algebras with structure systems

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title On Frobenius full matrix algebras with structure systems
 
Creator Fujita, H.
Sakai, Y.
Simson, D.
 
Description Let n ≥ 2 be an integer. In [5] and [6], an n × n
A-full matrix algebra over a field K is defined to be the set Mn(K)
of all square n × n matrices with coefficients in K equipped with a
multiplication defined by a structure system A, that is, an n-tuple
of n × n matrices with certain properties. In [5] and [6], mainly
A-full matrix algebras having (0, 1)-structure systems are studied,
that is, the structure systems A such that all entries are 0 or 1.
In the present paper we study A-full matrix algebras having non
(0, 1)-structure systems. In particular, we study the Frobenius Afull matrix algebras. Several infinite families of such algebras with
nice properties are constructed in Section 4.
 
Date 2019-06-20T02:46:10Z
2019-06-20T02:46:10Z
2007
 
Type Article
 
Identifier On Frobenius full matrix algebras with structure systems / H. Fujita, Y. Sakai, D. Simson // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 24–39. — Бібліогр.: 13 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16G10, 16G30, 16G60.
http://dspace.nbuv.gov.ua/handle/123456789/157356
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України