On Frobenius full matrix algebras with structure systems
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On Frobenius full matrix algebras with structure systems
|
|
Creator |
Fujita, H.
Sakai, Y. Simson, D. |
|
Description |
Let n ≥ 2 be an integer. In [5] and [6], an n × n A-full matrix algebra over a field K is defined to be the set Mn(K) of all square n × n matrices with coefficients in K equipped with a multiplication defined by a structure system A, that is, an n-tuple of n × n matrices with certain properties. In [5] and [6], mainly A-full matrix algebras having (0, 1)-structure systems are studied, that is, the structure systems A such that all entries are 0 or 1. In the present paper we study A-full matrix algebras having non (0, 1)-structure systems. In particular, we study the Frobenius Afull matrix algebras. Several infinite families of such algebras with nice properties are constructed in Section 4. |
|
Date |
2019-06-20T02:46:10Z
2019-06-20T02:46:10Z 2007 |
|
Type |
Article
|
|
Identifier |
On Frobenius full matrix algebras with structure systems / H. Fujita, Y. Sakai, D. Simson // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 24–39. — Бібліогр.: 13 назв. — англ.
1726-3255 2000 Mathematics Subject Classification: 16G10, 16G30, 16G60. http://dspace.nbuv.gov.ua/handle/123456789/157356 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|