Запис Детальніше

Analysis of steady-states of continuous-time impulse K-winners-take-all neural network

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Analysis of steady-states of continuous-time impulse K-winners-take-all neural network
 
Creator Tymoshchuk, Pavlo
 
Contributor Lviv Polytechnic National University
 
Date 2019-06-24T14:07:06Z
2019-06-24T14:07:06Z
2018-10-19
2018-10-19
 
Type Conference Abstract
 
Identifier Tymoshchuk P. Analysis of steady-states of continuous-time impulse K-winners-take-all neural network / Pavlo Tymoshchuk // САПР у проектуванні машин. Задачі впровадження та навчання : матеріали XXVI Міжнародної українсько-польської науково-технічної конференції, 19-20 жовтня 2018 року, Львів. — Львів : Видавництво Львівської політехніки, 2018. — С. 20–26.
978-966-941-229-4
http://ena.lp.edu.ua:8080/handle/ntb/45233
Tymoshchuk P. Analysis of steady-states of continuous-time impulse K-winners-take-all neural network / Pavlo Tymoshchuk // SAPR u proektuvanni mashyn. Zadachi vprovadzhennia ta navchannia : materialy XXVI Mizhnarodnoi ukrainsko-polskoi naukovo-tekhnichnoi konferentsii, 19-20 zhovtnia 2018 roku, Lviv. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2018. — P. 20–26.
 
Language en
 
Relation САПР у проектуванні машин. Задачі впровадження та навчання : матеріали XXVI Міжнародної українсько-польської науково-технічної конференції, 2018
[1] E. Majani, R. Erlanson, and Y. Abu-Mostafa, “On the k-winners-take-all network,” in Advances in Neural Information Processing Systems 1, R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1989, pp. 634-642.
[2] J. Wang, “Analysis and design of a k-winners-take-all network with a single state variable and the Heaviside step activation function,” IEEE Trans. Neural Networks, vol. 21, no. 9, pp. 1496-1506, Sept. 2010.
[3] P. Tymoshchuk, “Stability of impulse K-Winners-Take-All neural network,” Computer Systems of Design. Theory and Practice, No 882,pp. 90-98, 2017.
[4] R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Acoustics, Speech and Signal Processing Magazine, vol. 3, no. 4, pp. 4-22, Apr. 1987.
[5] P.Tymoshchuk and E.Kaszkurewicz, ”A winner-take all circuit using neural networks as building blocks,” Neurocomputing, vol. 64, pp.375-396, Mar. 2005.
[6] X. Cai, D. Prokhorov, and D. Wunsch, “Training winner-take-all simultaneous recurrent neural networks,” IEEE Trans. Neural Networks,vol. 18, no. 3, pp. 674-684, May 2007.
[7] J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, “Winnertake- all networks of O(N) complexity,” in Advances in Neural Information Processing Systems 1, R. P. Lippmann, J. E. Moody, and D.S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1989, pp. 703-711.
[8] B. Sekerkiran and U. Cilingiroglu, “A CMOS K-winners-take-all circuits with 0(N) complexity,” IEEE Trans. Circuits Systems II, vol. 46, no. 1, pp. 1-5, Jan. 1999.
[9] A. Cichocki and R. Unbehauen, Neural Networks for Optimization andSignal Processing. New York, NY, USA: Wiley, 1993.
[10] R. C. O’Reilly and Y. Munakata, Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge, MA: MIT Press, 2000.
[11] W. Maass, “Neural computation with winner-take-all as the only nonlinear operation,” in Advances in Information Processing Systems, vol. 12, S. A. Solla, T. K. Leen, and K.-R. Mueller, Eds. Cambridge, MA: MIT Press, 2000, pp. 293–299.
[1] E. Majani, R. Erlanson, and Y. Abu-Mostafa, "On the k-winners-take-all network," in Advances in Neural Information Processing Systems 1, R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1989, pp. 634-642.
[2] J. Wang, "Analysis and design of a k-winners-take-all network with a single state variable and the Heaviside step activation function," IEEE Trans. Neural Networks, vol. 21, no. 9, pp. 1496-1506, Sept. 2010.
[3] P. Tymoshchuk, "Stability of impulse K-Winners-Take-All neural network," Computer Systems of Design. Theory and Practice, No 882,pp. 90-98, 2017.
[4] R. P. Lippmann, "An introduction to computing with neural nets," IEEE Acoustics, Speech and Signal Processing Magazine, vol. 3, no. 4, pp. 4-22, Apr. 1987.
[5] P.Tymoshchuk and E.Kaszkurewicz, "A winner-take all circuit using neural networks as building blocks," Neurocomputing, vol. 64, pp.375-396, Mar. 2005.
[6] X. Cai, D. Prokhorov, and D. Wunsch, "Training winner-take-all simultaneous recurrent neural networks," IEEE Trans. Neural Networks,vol. 18, no. 3, pp. 674-684, May 2007.
[7] J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, "Winnertake- all networks of O(N) complexity," in Advances in Neural Information Processing Systems 1, R. P. Lippmann, J. E. Moody, and D.S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1989, pp. 703-711.
[8] B. Sekerkiran and U. Cilingiroglu, "A CMOS K-winners-take-all circuits with 0(N) complexity," IEEE Trans. Circuits Systems II, vol. 46, no. 1, pp. 1-5, Jan. 1999.
[9] A. Cichocki and R. Unbehauen, Neural Networks for Optimization andSignal Processing. New York, NY, USA: Wiley, 1993.
[10] R. C. O’Reilly and Y. Munakata, Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge, MA: MIT Press, 2000.
[11] W. Maass, "Neural computation with winner-take-all as the only nonlinear operation," in Advances in Information Processing Systems, vol. 12, S. A. Solla, T. K. Leen, and K.-R. Mueller, Eds. Cambridge, MA: MIT Press, 2000, pp. 293–299.
 
Rights © Національний університет «Львівська політехніка», 2018
 
Format 20-26
7
application/pdf
image/png
 
Coverage 19-20 жовтня 2018 року, Львів
Львів
 
Publisher Видавництво Львівської політехніки