Запис Детальніше

Critical plane approach in stage i and stage ii of fatigue under multiaxial loading

DSpace at Ternopil State Ivan Puluj Technical University

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Critical plane approach in stage i and stage ii of fatigue under multiaxial loading
 
Creator Karolczuk, A.
Macha, E.
 
Contributor Opole University of Technology, Faculty of Mechanical Engineering, ul. Mikolajczyka 5, 45-271 Opole, Poland, karol@po.opole.pl, emac@po.opole.pl
 
Description This paper deals with the estimation problem of the critical plane orientation in
multiaxial fatigue failure criteria. Experimental results from multiaxial proportional, nonproportional
cyclic loading and variable-amplitude bending and torsion were used to
determine the macroscopic fracture plane orientations and the fatigue lives. It was concluded
that more important than macroscopic fracture plane orientation is the evolution (Stage I,
Stage II) of fracture planes and an appropriate choice of the fatigue failure criterion for the
fatigue life estimation.
 
Date 2016-06-05T06:57:52Z
2016-06-05T06:57:52Z
2006-09-25
2006-09-25
 
Type Article
 
Identifier Karolczuk A. Critical plane approach in stage i and stage ii of fatigue under multiaxial loading / A. Karolczuk, E. Macha // Механічна втома металів. Праці 13-го міжнародного колоквіуму (МВМ-2006), 25-28 вересня 2006 року — Т. : ТДТУ, 2006 — С. 30-35. — (Пленарні доповіді).
966-305-027-6
http://elartu.tntu.edu.ua/handle/123456789/16761
Karolczuk A., Macha E. (2006) Critical plane approach in stage i and stage ii of fatigue under multiaxial loading. Mechanical Fatigue of Metals: Proceeding of the 13-th International Colloquium (MFM) (Tern., 25-28 September 2006), pp. 30-35 [in English].
 
Language en
 
Relation ⅩⅢ міжнародний колоквіум „Механічна втома металів“
ⅩⅢ Internation Colloquium "Mechanical fatigue of metals"
1. Findley, W.N. (1959), A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Journal of Engineering for Industry, November, 301-306.
2. Matake, T. (1977), An explanation on fatigue limit under combined stress, Bulletin of The Japan Society of Mech. Eng. 20, 257-263.
3. Fatemi, A. and Socie, D.F. (1988), A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract Engng Mater Struct 11, 149–165.
4. Karolczuk A., Macha E. (2005), A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials, Int J Fracture 134, 267-304
5. Forsyth, P.J.E. (1961), A two-stage process of fatigue crack growth. Proceedings of the Symposium on Crack Propagation, Cranfield, England, 76-94.
6. Park, J., Nelson, D. (2000), Evaluation of an energy-based approach and critical plane approach for predicting constant amplitude multiaxial fatigue limit, Int. J. Fatigue 22, 23-39.
7. Backstrom, M., Marquis, G. (2001), A review of multiaxial fatigue of weldments: experimental results, design code and critical plane approaches, Fatigue Fract Engng Mater Struct 24, 279-291.
8. Serensen, S.V., Kogayev, V.P. & Shnejderovich, R.M. (1975), Permissible Loading and Strength Calculations of Machine Components, Third Edn., Mashinostroenie, Moskva (in Russian).
9. Karolczuk, A., Macha, E. (2005), Fatigue fracture planes and expected principal stress directions under biaxial variable amplitude loading, Fatigue and Fracture of Engineering Materials and Structures 28, 99-106.
10. Chu, C.C. (1984) A three-dimensional model of anisotropic hardening in metals and its application to the analysis of sheet metal formability, J. Mech. Phys. Solids Vol. 32, No. 3, 197-212.
11. Karolczuk, A. (2006), Plastic strains and the macroscopic critical plane orientations under combined bending and torsion with constant and variable amplitudes, Engineering Fracture Mechanics, 73, 1629–1652.
1. Findley, W.N. (1959), A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Journal of Engineering for Industry, November, 301-306.
2. Matake, T. (1977), An explanation on fatigue limit under combined stress, Bulletin of The Japan Society of Mech. Eng. 20, 257-263.
3. Fatemi, A. and Socie, D.F. (1988), A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract Engng Mater Struct 11, 149–165.
4. Karolczuk A., Macha E. (2005), A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials, Int J Fracture 134, 267-304
5. Forsyth, P.J.E. (1961), A two-stage process of fatigue crack growth. Proceedings of the Symposium on Crack Propagation, Cranfield, England, 76-94.
6. Park, J., Nelson, D. (2000), Evaluation of an energy-based approach and critical plane approach for predicting constant amplitude multiaxial fatigue limit, Int. J. Fatigue 22, 23-39.
7. Backstrom, M., Marquis, G. (2001), A review of multiaxial fatigue of weldments: experimental results, design code and critical plane approaches, Fatigue Fract Engng Mater Struct 24, 279-291.
8. Serensen, S.V., Kogayev, V.P. & Shnejderovich, R.M. (1975), Permissible Loading and Strength Calculations of Machine Components, Third Edn., Mashinostroenie, Moskva (in Russian).
9. Karolczuk, A., Macha, E. (2005), Fatigue fracture planes and expected principal stress directions under biaxial variable amplitude loading, Fatigue and Fracture of Engineering Materials and Structures 28, 99-106.
10. Chu, C.C. (1984) A three-dimensional model of anisotropic hardening in metals and its application to the analysis of sheet metal formability, J. Mech. Phys. Solids Vol. 32, No. 3, 197-212.
11. Karolczuk, A. (2006), Plastic strains and the macroscopic critical plane orientations under combined bending and torsion with constant and variable amplitudes, Engineering Fracture Mechanics, 73, 1629–1652.
 
Rights © Тернопільський державний технічний університет імені Івана Пулюя
 
Format 30-35
6
 
Coverage 25-28 вересня 2006 року
25-28 September 2006
Україна, Тернопіль
Ukraine, Ternopil
 
Publisher ТДТУ
TDTU