Запис Детальніше

A phenomenological model of macrocrack initiation and growth in cyclically deformed material

DSpace at Ternopil State Ivan Puluj Technical University

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title A phenomenological model of macrocrack initiation and growth in cyclically deformed material
 
Creator Ostash, O. P.
Panasyuk, V. V.
 
Contributor Karpenko Physico-Mechanical Institute, National Academy of Science of Ukraine, 5, Naukova Str., 79601, Lviv, Ukraine
 
Description Role of the process zone in fatigue macrocrack initiation and propagation is
considered. An examples of the assessment of the fatigue macrocrack initiation period, Ni,
and the failure period, Nf, of a notched specimens on the base of unified model using fatigue
macrocrack growth rates only are shown. Some backgrounds and well-known fatigue
phenomena (Kitagawa's and Smith's diagrams, etc) are discussed.
 
Date 2016-06-05T07:00:29Z
2016-06-05T07:00:29Z
2006-09-25
2006-09-25
 
Type Article
 
Identifier Ostash O. P. A phenomenological model of macrocrack initiation and growth in cyclically deformed material / O. P. Ostash, V. V. Panasyuk // Механічна втома металів. Праці 13-го міжнародного колоквіуму (МВМ-2006), 25-28 вересня 2006 року — Т. : ТДТУ, 2006 — С. 152-159. — (Фізичні та феноменологічні підходи до опису втомного пошкодження).
966-305-027-6
http://elartu.tntu.edu.ua/handle/123456789/16779
Ostash O. P., Panasyuk V. V. (2006) A phenomenological model of macrocrack initiation and growth in cyclically deformed material. Mechanical Fatigue of Metals: Proceeding of the 13-th International Colloquium (MFM) (Tern., 25-28 September 2006), pp. 152-159 [in English].
 
Language en
 
Relation ⅩⅢ міжнародний колоквіум „Механічна втома металів“
ⅩⅢ Internation Colloquium "Mechanical fatigue of metals"
1. Schijve J. Fatigue of structures and materials in the 20th century and the state of the art // International Journal of Fatigue.- 2003.- 25 (8).- p. 679-702.
2. Ostash O.P., Panasyuk V.V., Kostyk C.M. A phenomenological model of fatigue macrocrack initiation near stress concentrators // Fatigue Fract. Engng Mater. Struct.- 1999.- 22 (2).- p. 161-172.
3. Ostash O.P., Panasyuk V.V. Fatigue process zone at notches // Int. J. Fatigue.- 2001.- 23 (7).- p. 627-636.
4. Ostash O.P., Panasyuk V.V. A unified approach to fatigue macrocrack initiation and propagation // Int. J. Fatigue.- 2003.- 25 (8).- p. 703-708.
5. Neuber H. Kerbspannungslehre, Berlin, Springer, 1945. (Trans. Theory of Notch Stress, U.S. Office of Technical Services, 1961).
6. Peterson R.E. Notch sensitivity, Metal fatigue (Sines G., Weisman I.L., editors), New York, Mc Craw-Hill, 1959.- p. 293-306.
7. Qylafsku G., Azari Z., Kadi N., Gjonaj N., Pluvinage G. Application of a new model proposal for the fatigue life prediction on notches and key-seats // Int. J. Fatigue.- 1999.- 21 (8).- p. 753-760.
8. Taylor D., Wang G. The validation of some methods of notch fatigue analysis // Fatigue Fract. Engng Mater. Struct.- 2000.- 23.- p. 387-394.
9. Klesnil M., Lukas P. Fatigue of metallic materials, Prague, Academia, 1980.- 239 p.p.
10. Troshchenko V.T. Investigation of the threshold stress intensity factors at cyclic loading. Communication 2. Prediction of the fatigue limit and the fatigue crack propagation // Strength of Materials.- 1998.- № 5.- p. 5-11 (in Russian).
11. Kitagawa H., Takahashi S. Applicability of fracture mechanics to very small cracks in the early stage // Proceedings 2nd Int. Conf. on Mechanical Behaviour of Materials, Boston, Massachusetts, 1976.- p. 627-631.
12. El Haddad M. H., Dowling N. F., Topper T. H., Smith K. N. J-integral application for short fatigue cracks at notches // Int. J. of Fracture.- 1980.- 16.- p. 15-24.
13. Taylor D. Geometrical effects in fatigue: a unifying theoretical model // Int. J. of Fatigue.- 1999.-21.- p. 413-420.
14. Yarema S.Ya., Ostash O.P. About the fracture toughness of materials at cyclic loading // Soviet Material Science.- 1978.- 5.- p. 112-114.
15. Ostash O. P. Assessment of materials degradation in structures after long-term service using unified model of fatigue fracture.—Fracture Mechanics of Materials and Strength of Structures (Editor Panasyuk V. V.), Lviv, Karpenko Physico-Mechanical Institute, 2004.- p.p. 457-464 (in Ukrainian).
16. Saanouni K., Bathias C. Study of fatigue initiation in the vicinity of notches // Engng Fract. Mech.- 1982.- 16 (5).- p. 615-706.
17. Smith R. A., Miller K. J. Prediction of fatigue regimes in notched component // Int. J. Mech. Sci.-1978.- 20 (3).- p. 201-206.
1. Schijve J. Fatigue of structures and materials in the 20th century and the state of the art, International Journal of Fatigue, 2003, 25 (8), p. 679-702.
2. Ostash O.P., Panasyuk V.V., Kostyk C.M. A phenomenological model of fatigue macrocrack initiation near stress concentrators, Fatigue Fract. Engng Mater. Struct, 1999, 22 (2), p. 161-172.
3. Ostash O.P., Panasyuk V.V. Fatigue process zone at notches, Int. J. Fatigue, 2001, 23 (7), p. 627-636.
4. Ostash O.P., Panasyuk V.V. A unified approach to fatigue macrocrack initiation and propagation, Int. J. Fatigue, 2003, 25 (8), p. 703-708.
5. Neuber H. Kerbspannungslehre, Berlin, Springer, 1945. (Trans. Theory of Notch Stress, U.S. Office of Technical Services, 1961).
6. Peterson R.E. Notch sensitivity, Metal fatigue (Sines G., Weisman I.L., editors), New York, Mc Craw-Hill, 1959, p. 293-306.
7. Qylafsku G., Azari Z., Kadi N., Gjonaj N., Pluvinage G. Application of a new model proposal for the fatigue life prediction on notches and key-seats, Int. J. Fatigue, 1999, 21 (8), p. 753-760.
8. Taylor D., Wang G. The validation of some methods of notch fatigue analysis, Fatigue Fract. Engng Mater. Struct, 2000, 23, p. 387-394.
9. Klesnil M., Lukas P. Fatigue of metallic materials, Prague, Academia, 1980, 239 p.p.
10. Troshchenko V.T. Investigation of the threshold stress intensity factors at cyclic loading. Communication 2. Prediction of the fatigue limit and the fatigue crack propagation, Strength of Materials, 1998, No 5, p. 5-11 (in Russian).
11. Kitagawa H., Takahashi S. Applicability of fracture mechanics to very small cracks in the early stage, Proceedings 2nd Int. Conf. on Mechanical Behaviour of Materials, Boston, Massachusetts, 1976, p. 627-631.
12. El Haddad M. H., Dowling N. F., Topper T. H., Smith K. N. J-integral application for short fatigue cracks at notches, Int. J. of Fracture, 1980, 16, p. 15-24.
13. Taylor D. Geometrical effects in fatigue: a unifying theoretical model, Int. J. of Fatigue, 1999.-21, p. 413-420.
14. Yarema S.Ya., Ostash O.P. About the fracture toughness of materials at cyclic loading, Soviet Material Science, 1978, 5, p. 112-114.
15. Ostash O. P. Assessment of materials degradation in structures after long-term service using unified model of fatigue fracture.-Fracture Mechanics of Materials and Strength of Structures (Editor Panasyuk V. V.), Lviv, Karpenko Physico-Mechanical Institute, 2004, p.p. 457-464 (in Ukrainian).
16. Saanouni K., Bathias C. Study of fatigue initiation in the vicinity of notches, Engng Fract. Mech, 1982, 16 (5), p. 615-706.
17. Smith R. A., Miller K. J. Prediction of fatigue regimes in notched component, Int. J. Mech. Sci.-1978, 20 (3), p. 201-206.
 
Rights © Тернопільський державний технічний університет імені Івана Пулюя
 
Format 152-159
8
 
Coverage 25-28 вересня 2006 року
25-28 September 2006
Україна, Тернопіль
Ukraine, Ternopil
 
Publisher ТДТУ
TDTU