PREDICTION OF TRANSPORT VEHICLES’ DURABILITY WITH CONSIDERATION OF CORROSIVE SURFACE CRACKS PROPAGATION IN STRUCTURAL ELEMENTS
DSpace at Ternopil State Ivan Puluj Technical University
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
PREDICTION OF TRANSPORT VEHICLES’ DURABILITY WITH CONSIDERATION OF CORROSIVE SURFACE CRACKS PROPAGATION IN STRUCTURAL ELEMENTS
|
|
Creator |
Popovych, Pavlo
Shevchuk, Oksana VITENKO, Tetiana DROŹDZIEL, Paweł ZOLOTYI, Roman KONONCHUK, Oleksandr |
|
Contributor |
Ternopil Ivan Pul’uj National Technical University, Department of transporting technology and mechanics
Lublin University of Technology, Faculty of Mechanical Engineering Ternopil Ivan Pul’uj National Technical University, Department of Food Technologies Equipment |
|
Subject |
elements of structures with surface cracks; kinetic diagram of corrosion-fatigue crack propagation; period of subcritical growth of corrosionfatigue cracks; durability of vehicle
|
|
Description |
Support frameworks of transport vehicles operate under varying terrain conditions under the influence of extreme climate and corrosive environments. When transporting cargo, dust is deposited on the surface of metal structures. The combination of dust and moisture creates an aggressive environment resulting in intense corrosion damage. The damage is caused by the defects of corrosion pitting, which occur on the surface and transform into corrosion cracks. Based on energy approaches, with the application of wellknown results for the mathematical description of electrochemical reactions and the principles of fragile fracture mechanics, an analytical model of durability is proposed for the first time. The model determines the residual life of maximum loaded elements of undercarriages with surface cracks under the action of dynamic loads and corrosive environments. For this case, a set of mathematical relations in the form of a non-linear differential equation was developed, as well as the initial and final conditions for determining the life of vehicles’ structural elements with corrosive surface cracks. The analytical model implementation is proven by solving the problem of determining the residual life of a vehicle’s element, i.e., a steel plate, weakened by a semi-elliptical surface crack, which is under the action of dynamic loads in a 3% sodium chloride solution. The insignificant increase in the crack’s initial size is proven to greatly reduce the period of its subcritical growth. The developed model was applied to define the residual life of thin-walled elements of structures with surface cracks. |
|
Date |
2018-12-29T18:06:41Z
2018-12-29T18:06:41Z 2018-12 |
|
Type |
Journal
|
|
Identifier |
Droździel, P., Popovych, P., Vitenko, T., Shevchuk, O., Zolotyi, R., Kononchuk, O.
Prediction of transport vehicles’ durability with consideration of corrosive surface cracks
propagation in structural elements. Scientific Journal of Silesian University of Technology.
Series Transport. 2018, 101, 47-57. ISSN: 0209-3324.
DOI: https://doi.org/10.20858/sjsutst.2018.101.5.
2450-1549 http://elartu.tntu.edu.ua/handle/lib/26953 Droździel, P., Popovych, P., Vitenko, T., Shevchuk, O., Zolotyi, R., Kononchuk, O. Prediction of transport vehicles’ durability with consideration of corrosive surface cracks propagation in structural elements. Scientific Journal of Silesian University of Technology. Series Transport. 2018, 101, 47-57. ISSN: 0209-3324. DOI: https://doi.org/10.20858/sjsutst.2018.101.5. |
|
Language |
en
|
|
Relation |
1. Severnyi А.Ye. 1993. Stability and corrosion protection of agricultural machinery. Moscow: State Research and Technological Institute. 2. Pohmurskyi V.I., М.S. Khoma. 2008. Corrosive fatigue of metals and alloys. Lviv: Spolom. 3. Romaniv О.N., S.Ya. Yarema, G.N. Nikiforchyn, N.А. Makhutov, М.М. Stadnyk. 1990. Fatigue and cyclic crack resistance of structural materials. Kiev: Naukova Dumka. 4. Cherepanov G.P. 1974. Mechanics of brittle failure. Moscow: Nauka. 5. Dmytrah І.М., V.V. Panasiuk. 1999. Influence of corrosive media on local destruction of metals near stress concentrators. Liviv: PMI NASU. 6. Korneyenko S.V., О.М. Korbutiak. 2008. „Resources of underground geological space of Ukraine”. Geology 43: 51-53. 7. Korneyenko S., О.M. Korbutiak. 2009. „Problems of the influence of soil environment on corrosion of main gas pipelines of Ukraine”. Geology 46: 42-43. 8. Maltseva G. N. 2000. Corrosion and protection of equipment against corrosion. Penza. 9. Andreykiv O.Ye., М.V. Кіt. 2006. Determination of residual durability of thin-walled elements of structures at two-axis loads. Physical-Chemical Mechanics of Materials 1: 11-16. 10. Andreykiv O.Ye., М.V. Кіt. 2006. „Determination of the period of subcritical growth of cracks in the elements of structures at their two-frequency loads”. Machine Science 2: 3-9. 11. Andreykiv O.Ye., N.B. Sas. 2008. “The subcritical growth of a flat crack in a threedimensional body at high temperature creep”. Physical-Chemical Mechanics of Materials 2: 19-26. 12. Andreykiv O.Ye., А.I. Darchuk. 1992. Fatigue failure and durability of structures. Kiev: Naukova Dumka. 13. Directory of stress intensity coefficients. 1990. Mir: Murakami. 14. Tsyrulnyk O.T., D.Yu. Petryna, M.I. Hredil. 2006. “The fracture peculiarities of trunk pipeline steels after their long term service”. Proceedings of the international conference on Crack paths (CP 2006). Paper No 61. Parma, Italy, 14th-16th September 2006. 15. Shchurin К.V. 1994. Forecasting and increasing the fatigue life of the bearing systems of agricultural tractor means. Dissertation of Doctor of Science (Engineering). Orenburg. 16. Figlus T. 2015. The application of a continuous wavelet transform for diagnosing damage to the timing chain tensioner in a motorcycle engine. Journal of Vibroengineering17(3): 1286-1294. ISSN: 1392-8716. 17. Koziol M., T. Figlus. 2017. Evaluation of the failure progress in the static bending of GFRP laminates reinforced with a classic plain-woven fabric and a 3d fabric, by means of the vibrations analysis. Polymer Composites 38(6): 1070-1085. DOI: 10.1002/pc.23670. 18. Ukrayina u tsyfrakh. Statystychnyy zbirnyk. Vidpovidal'nyy za vypusk O.A. Vyshnevs'ka. Za redaktsiyeyu: I.Ye. 2017. Vernera. Kyyiv: Derzhavna sluzhba statystyky Ukrayiny. [In Ukrainian: Ukraine on numbers. Static zbirnik. Edited by I.E. Werner. Kiyiv: State Statistics Service]. 19. Kosicka E., E. Kozłowski, D. Mazurkiewicz. 2015. „The use of stationary tests for analysis of monitored residual processes”. Eksploatacja i Niezawodnosc – Maintenance and Reliability 17(4): 604-609. DOI: http://dx.doi.org/10.17531/ein.2015.4.17. 20. Maruschak Pavlo, Sergey Panin, Ilya Vlasov, Olegas Prentkovskis, Iryna Danyliuk. 2015. „Structural levels of the nucleation and growth of fatigue crack in 17Mn1Si steel pipeline after long-term service”. Transport 30(1): 15-23. 21. Maruschak P., Poberezhny L., Pyrig T. 2013. “Fatigue and brittle fracture of carbon steel of gas and oil pipelines”. Transport 28(3): 270-275. 22. Figlus Tomasz, Marcin Stańczyk. 2014. “Diagnosis of the wear of gears in the gearbox using the wavelet packet transform”. Metalurgija 53(4): 673-676. ISSN: 0543-5846.
Severnyi А.Ye. 1993. Stability and corrosion protection of agricultural machinery. Moscow: State Research and Technological Institute. 2. Pohmurskyi V.I., М.S. Khoma. 2008. Corrosive fatigue of metals and alloys. Lviv: Spolom. 3. Romaniv О.N., S.Ya. Yarema, G.N. Nikiforchyn, N.А. Makhutov, М.М. Stadnyk. 1990. Fatigue and cyclic crack resistance of structural materials. Kiev: Naukova Dumka. 4. Cherepanov G.P. 1974. Mechanics of brittle failure. Moscow: Nauka. 5. Dmytrah І.М., V.V. Panasiuk. 1999. Influence of corrosive media on local destruction of metals near stress concentrators. Liviv: PMI NASU. 6. Korneyenko S.V., О.М. Korbutiak. 2008. „Resources of underground geological space of Ukraine”. Geology 43: 51-53. 7. Korneyenko S., О.M. Korbutiak. 2009. „Problems of the influence of soil environment on corrosion of main gas pipelines of Ukraine”. Geology 46: 42-43. 8. Maltseva G. N. 2000. Corrosion and protection of equipment against corrosion. Penza. 9. Andreykiv O.Ye., М.V. Кіt. 2006. Determination of residual durability of thin-walled elements of structures at two-axis loads. Physical-Chemical Mechanics of Materials 1: 11-16. 10. Andreykiv O.Ye., М.V. Кіt. 2006. „Determination of the period of subcritical growth of cracks in the elements of structures at their two-frequency loads”. Machine Science 2: 3-9. 11. Andreykiv O.Ye., N.B. Sas. 2008. “The subcritical growth of a flat crack in a threedimensional body at high temperature creep”. Physical-Chemical Mechanics of Materials 2: 19-26. 12. Andreykiv O.Ye., А.I. Darchuk. 1992. Fatigue failure and durability of structures. Kiev: Naukova Dumka. 13. Directory of stress intensity coefficients. 1990. Mir: Murakami. 14. Tsyrulnyk O.T., D.Yu. Petryna, M.I. Hredil. 2006. “The fracture peculiarities of trunk pipeline steels after their long term service”. Proceedings of the international conference on Crack paths (CP 2006). Paper No 61. Parma, Italy, 14th-16th September 2006.15. Shchurin К.V. 1994. Forecasting and increasing the fatigue life of the bearing systems of agricultural tractor means. Dissertation of Doctor of Science (Engineering). Orenburg. 16. Figlus T. 2015. The application of a continuous wavelet transform for diagnosing damage to the timing chain tensioner in a motorcycle engine. Journal of Vibroengineering17(3): 1286-1294. ISSN: 1392-8716. 17. Koziol M., T. Figlus. 2017. Evaluation of the failure progress in the static bending of GFRP laminates reinforced with a classic plain-woven fabric and a 3d fabric, by means of the vibrations analysis. Polymer Composites 38(6): 1070-1085. DOI: 10.1002/pc.23670. 18. Ukrayina u tsyfrakh. Statystychnyy zbirnyk. Vidpovidal'nyy za vypusk O.A. Vyshnevs'ka. Za redaktsiyeyu: I.Ye. 2017. Vernera. Kyyiv: Derzhavna sluzhba statystyky Ukrayiny. [In Ukrainian: Ukraine on numbers. Static zbirnik. Edited by I.E. Werner. Kiyiv: State Statistics Service]. 19. Kosicka E., E. Kozłowski, D. Mazurkiewicz. 2015. „The use of stationary tests for analysis of monitored residual processes”. Eksploatacja i Niezawodnosc – Maintenance and Reliability 17(4): 604-609. DOI: http://dx.doi.org/10.17531/ein.2015.4.17. 20. Maruschak Pavlo, Sergey Panin, Ilya Vlasov, Olegas Prentkovskis, Iryna Danyliuk. 2015. „Structural levels of the nucleation and growth of fatigue crack in 17Mn1Si steel pipeline after long-term service”. Transport 30(1): 15-23. 21. Maruschak P., Poberezhny L., Pyrig T. 2013. “Fatigue and brittle fracture of carbon steel of gas and oil pipelines”. Transport 28(3): 270-275. 22. Figlus Tomasz, Marcin Stańczyk. 2014. “Diagnosis of the wear of gears in the gearbox using the wavelet packet transform”. Metalurgija 53(4): 673-676. ISSN: 0543-5846. |
|
Coverage |
PL
|
|
Publisher |
Silesian University of Technology
|
|