Запис Детальніше

Паралельний адаптивний вирішувач для лінійних систем на основі нейронної мережі

DSpace at NTB NTUU KPI

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Паралельний адаптивний вирішувач для лінійних систем на основі нейронної мережі
 
Creator Душутін, Владислав Володимирович
 
Contributor Хіміч, Олександр Миколайович
 
Subject СЛАР
паралельні обчислення
розпізнавання зображень
нейронна мережа
класифікації даних
ненульові елементи
SLAR
parallel calculation
image risk
neural network
data classification
nonzero elements
004.932.2
 
Description Магістерська дисертація: 100 с., 15 рис., 14 табл., 1 додаток, 83 джерела.
Зараз одним з основних етапів при дослідженні об’єктів, явищ і процесів різної природи є математичне моделювання і пов’язаний ним комп’ютерний експеримент. Чисельні експерименти дають можливість, як планувати натурний експеримент, так і отримувати нові знання про ті процеси і явища для яких утруднений, або взагалі неможливий натурний експеримент. Велика кількість математичних моделей після виконання відповідних перетворень можуть бути описанні системами лінійних алгебраїчних рівнянь (СЛАР) з розрідженими матрицями.
Основною особливістю таких систем є їхні великі порядки і невелика кількість ненульових елементів. Великі порядки СЛАР виникають за рахунок того, що дослідники хочуть отримати якомога достовірніші результати, через це будуються більш деталізовані моделі. Мала кількість ненульових елементів пояснюється особливостями дискретизації моделі. Зокрема, системи рівнянь з розрідженими матрицями виникають у задачах аналізу міцності конструкцій у цивільному та промисловому будівництві, фільтрації, тепло- та масо переносу, тощо. Область застосування методів розв’язування СЛАР з розрідженими матрицями постійно розширюється. Через це виникає інтерес до проблеми побудови ефективних методів розв’язання таких систем, порядки яких перевищую сотні тисяч.
Класичні результати, що стосуються розробки методів розв’язання СЛАР з розрідженими матрицями висвітлюються у ряді монографій американських і вітчизняних авторів: А. Джорджа, Дж. Лю, С. Писанецьки, Дж. Голуба, Р. Тюарсона, І.А. Блатова, М.Е. Ексаревської та інших.
Також зростають вимоги до обчислювальної техніки, що використовується для проведення комп’ютерного експерименту. Вона повинна забезпечувати достатню швидкодію і мати необхідну кількість ресурсів, щоб результат експерименту можна було отримати за досить невеликий проміжок часу. Зараз на ринку представлені багато різних архітектур комп’ютерів з
паралельною організацією обчислень. Найбільш продуктивними є платформи так званої «гібридної» архітектури. Дані системи поєднують у собі MIMD- (multiple instructions – multiple data) та SIMD-архітектури (single instruction – multiple data), а саме у системі з багатоядерними процесорами обчислення прискорюються за рахунок графічного прискорювача. Отже одним з ефективних підходів до розв’язання СЛАР з розрідженими матрицями є побудова паралельних алгоритмів, що враховують особливості архітектури комп’ютера.
Основними проблемами розробки ефективних паралельних алгоритмів є: аналіз структури матриці, або приведення її до відповідного вигляду, застосовуючи відповідні алгоритми перетворення; вибір ефективної декомпозиції даних; визначення ефективної кількості процесорних ядер і графічних прискорювачів, що використовуються для обчислень; визначення топології міжпроцесних зв’язків, яка зменшує кількість комунікацій і синхронізацій.
Саме для аналізу структури розрідженої матриці використовується нейрона мережа, яка дозволить виділити групи ненульових елементів, які можуть оброблятись незалежно. За результатами аналізу буде будуватись декомпозиція даних та обиратись кількість обчислювальних ядер, що забезпечить найкоротший час розрахунків для конкретної структури матриці.
Мета та завдання дослідження. Метою роботи є розробка та дослідження паралельних методів та комп’ютерних алгоритмів для дослідження та розв’язування СЛАР з розрідженими матрицями нерегулярної структури на комп’ютерах MIMD-архітектури та комбінації MIMD- і SIMD-архітектури, апробація алгоритмів при математичному моделюванні у прикладних задачах.
До завдань дослідження належать:
• розробка та дослідження ітераційних паралельних алгоритмів для СЛАР з розрідженими матрицями нерегулярної структури з наближеними даними;
• розробка алгоритмів та програм дослідження достовірності розв’язків, отриманих прямими та ітераційними методами;
• апробація алгоритмів для математичного моделювання в прикладних задачах.
Об’єкт дослідження – математичні моделі, що описуються СЛАР з розрідженими матрицями нерегулярної структури.
Предмет дослідження – паралельні методи та комп’ютерні алгоритми знаходження розв’язку СЛАР з розрідженими матрицями нерегулярної структури.
Методи дослідження. У роботі застосовуються методи теорії матриць, лінійної алгебри, теорії графів, функціонального аналізу, теорії похибок, теорія нейронних мереж.
Now one of the main stages in the study of objects, phenomena and processes of different nature is mathematical modeling and related computer experiment. Numerous experiments give an opportunity to plan a full-scale experiment, as well as to get new knowledge about those processes and phenomena for which it is difficult, or in general, impossible to carry out a full-scale experiment. A large number of mathematical models can be described by systems of linear algebraic equations (SLRs) with soldered matrices after performing the corresponding transformations.
The main feature of such systems is their large orders and a small number of non-zero elements. Large orders of SLAR arise due to the fact that researchers want to get the most reliable results, which is why more detailed models are being built. The small number of non-zero elements is due to the discretization of the model. In particular, systems of equations with sparse matrices arise in problems of analysis of the strength of structures in civil and industrial construction, filtration, heat and mass transfer, and others like that. Scope of the methods of solving SLR with sparse matrices is constantly expanding. Because of this, there is an interest in the problem of constructing effective methods for solving such systems, whose orders exceed hundreds of thousands.
Classical results concerning the development of methods for solving SLRR with rarefied matrices are covered in a series of monographs of American and domestic authors: A. George, J. Liu, S. Pisanetski, J. Golub, R. Tjurson, I. A. Blatova, ME Ekseryrovskaya and others.
Also, the requirements for the computer technology used to conduct a computer experiment are growing. It must provide sufficient speed and have the required amount of resources so that the result of the experiment can be obtained over a relatively short period of time. Now in the market there are many different architectures of computers with parallel computing organization. The most productive are the platforms of the so-called "hybrid" architecture. These systems combine MIMD (multiple instructions - multiple data) and SIMD architecture (single instruction - multiple data), in particular, in a multi-core processor system,
computations are accelerated by means of a graphical accelerator. Hence, one of the effective approaches to solving SLR with sparse matrices is the construction of parallel algorithms that take into account the peculiarities of computer architecture.
The main problems of developing effective parallel algorithms are: analysis of the structure of the matrix, or bringing it to the corresponding form, using appropriate conversion algorithms; choice of effective data decomposition; determining the effective number of processor cores and graphic accelerators used for calculations; definition of the interprocess communication topology, which reduces the number of communications and synchronizations.
It is precisely for analyzing the structure of a sparse matrix that a neural network is used which allows the selection of groups of non-zero elements that can be processed independently. The results of the analysis will be based on the decomposition of data and the number of computing cores to be selected, which will provide the shortest settlement time for a particular matrix structure.
The purpose and objectives of the study. The purpose of the work is to develop and research parallel methods and computer algorithms for research and solving SLR with sparse matrices of irregular structure on computers of MIMD architecture and MIMD and SIMD architecture combinations, testing of algorithms in mathematical modeling in applied problems.
The research tasks include:
• development and research of iterative parallel algorithms for SLR with sparse matrices of irregular structure with approximate data;
• development of algorithms and programs for investigating the validity of solutions obtained by direct and iterative methods;
• Approbation of algorithms for mathematical modeling in applied problems.
The object of the study is the mathematical models described by SLAR with sparse matrices of the irregular structure.
The subject of the study is parallel methods and computer algorithms for locating the SLR solution with sparse matrices of the irregular structure.
Research methods. The paper uses methods of matrix theory, linear algebra, graph theory, functional analysis, error theory, and the theory of neural networks.
 
Date 2018-06-21T08:32:32Z
2018-06-21T08:32:32Z
2018
 
Type Master Thesis
 
Identifier Душутін, В. В. Паралельний адаптивний вирішувач для лінійних систем на основі нейронної мережі : магістерська дис. : 122 Комп'ютерні науки та інформаційні технології / Душутін Владислав Володимирович. – Київ, 2018. – 99 с.
http://ela.kpi.ua/handle/123456789/23556
 
Language uk
 
Format 99 с.
application/pdf
 
Publisher Київ.