Mathematical modeling of processes of nonisothermal adsorption, desorption and heat transfer of hydrocarbons in nanoporous catalysts based on zeolite ZSM-5 of exhaust gas neutralization systems
DSpace at Ternopil State Ivan Puluj Technical University
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Mathematical modeling of processes of nonisothermal adsorption, desorption and heat transfer of hydrocarbons in nanoporous catalysts based on zeolite ZSM-5 of exhaust gas neutralization systems
Математичне моделювання процесів неізотермічної адсорбції, десорбції і теплопереносу вуглеводнів в нанопористих каталізаторах на основі цеоліту ZSM-5 систем нейтралізації вихлопних газів |
|
Creator |
Петрик, Михайло Романович
Бойко, Ігор Володимирович Михалик, Дмитро Михайлович Петрик, Марія Михайлівна Луцик, Надія Степанівна Ковбашин, Василь Іванович Petryk, Mykhaylo Boyko, Igor Mykhalyk, Dmytro Petryk, Maria Lutsyk, Nadiia Kovbashyn, Vasyl |
|
Contributor |
Тернопільський національний технічний університет імені Івана Пулюя, Тернопіль, Україна
Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine |
|
Subject |
дегідратація газу
дифузія адсорбції газів адсорбція та десорбція газів моделювання метод Хевісайда інтегральне перетворення Лапласа Natural gas dehydration diffusion of adsorbed gas adsorption and desorption of gases modeling Heaviside’s operational method Laplace integral transformation 519.6 |
|
Description |
Описано експериментальне й теоретичне дослідження неізотермічної адсорбції та десорбції газу з використанням мікропористих каталізаторів для технології паливних двигунів. Аналітичні розв’язки проблеми неізотермічної адсорбції, десорбції й теплообміну побудовано на основі операційного методу Хевісайда та інтегральних перетвореннях Лапласа. Представлено числове моделювання розподілів компонентів пропану та інших вуглеводнів на вході й виході цеолітного ложе для кожної адсорбційно-десорбційної фази в часі. An experimental and theoretical study of the non-isothermal adsorption and desorption of gas using microporous silica beds for motor fuel technology is described. Analytical solutions to the problem of non-isothermal adsorption and desorption and heat transfer are based on Heaviside’s operational method and Laplace integral transformation. Modeling distributions of propane ant others hydrocarbon components at the inlet and outlet of the silica beds for each adsorption - desorption phase at different times are presented. |
|
Date |
2018-04-14T08:45:07Z
2018-04-14T08:45:07Z 2018-01-31 2018-01-31 2017-12-25 |
|
Type |
Conference Abstract
|
|
Identifier |
Mathematical modeling of processes of nonisothermal adsorption, desorption and heat transfer of hydrocarbons in nanoporous catalysts based on zeolite ZSM-5 of exhaust gas neutralization systems / Mykhaylo Petryk, Igor Boyko, Dmytro Mykhalyk, Maria Petryk, Nadiia Lutsyk, Vasyl Kovbashyn // Scientific Journal of TNTU. — Tern. : TNTU, 2017. — Vol 88. — No 4. — P. 145–152. — (Mathematical modeling. Mathematics).
2522-4433 http://elartu.tntu.edu.ua/handle/lib/24743 Petryk M., Boyko I., Mykhalyk D., Petryk M., Lutsyk N., Kovbashyn V. (2017) Mathematical modeling of processes of nonisothermal adsorption, desorption and heat transfer of hydrocarbons in nanoporous catalysts based on zeolite ZSM-5 of exhaust gas neutralization systems. Scientific Journal of TNTU (Tern.), vol. 88, no 4, pp. 145-152. https://doi.org/10.33108/visnyk_tntu2017.04.145 |
|
Language |
en
|
|
Relation |
Вісник Тернопільського національного технічного університету, 4 (88), 2017
Scientific Journal of the Ternopil National Technical University, 4 (88), 2017 1. Unger N., Bond T.C., Wang J.S., Koch D.M., Menon S., Shindell D.T., Bauer S. Attribution of climate forcing to economic sectors, Proc. Natl. Acad. Sci., 2010, 107 (8), 3382 - 7. https://doi.org/10.1073/pnas.0906548107 2. Euro 5 and Euro 6 standards, 2010, Reduction of pollutant emissions from light vehicles. Europa.eu/legislation_summaries/environment/air_pollution / l28186_es.htm (May 5, 2010). 3. Ballinger T.H., Anderson P.J. Hydrocarburation trap/catalyst for reducing cold-cast emission from internal combustion engines.US Ptent 6617276 B1, 2003. 4. Puertolas B., Navarro M.V., Lopez J.M., Murillo R., Mastral A.M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite / Separation and Purification Technology 86 (2012) 127 - 136. https://doi.org/10.1016/j.seppur.2011.10.036 5. Szczygiel J., Szyia B. Diffusion of hydrocarburations in the reforming catalyst: molecular modeling. J. Mol. Graphocs. Modell. 22 (2004) 231 - 239. https://doi.org/10.1016/j.jmgm.2003.09.001 6. V.B. Kanzanski, Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons, Catal. Today 51 (1999) 419 - 434. https://doi.org/10.1016/S0920-5861(99)00031-0 7. López J.M., Navarro M.V., Garcia T., Murillo R., Mastral A.M., Varela-Candia F.J., Lozano-Castello D., Bueno-López A., Cazola-Amoros D. Screening of different zeolites and silicoaluminophosphates for the retention of propene under cold start conditions. Microporous Mesoporous Mater. 130 (2010) 239 - 247. https://doi.org/10.1016/j.micromeso.2009.11.016 8. Heaviside Oliver., 1893, Electromagnetic Theory, “The Electrician” Printing & Publidhing Co. Vo1. 1. London, E.C. 532 p. 9. Kärger J. and Ruthven D. Diffusion in Zeolites and Other Microporous Solids, John Wiley & Sons, New York, 1992. 605 p. 10. Sergienko I., Petryk M., Khimith O.N., Mykhalyk D., Leclerc S., Fraissard J., 2014, Mathematical Modelling of Diffusion Process in Microporous Media (Numerical analysis and application). Kyiv: Natl. Acad. Sci. Ukraine, 196 p. (2014) [in Russian]. 11. Petryk M. Mathematical Modeling of Nonlinear Non-isothermic Process of Diffusion and Adsorption in Compressed Layer of Adsorbent. Integral Transformations and Application in Boundary Problems. Bulletin of Institute of Mathematics. Kyiv: Nat. Acad. Sci. Ukraine, 6, 151 – 164 (1994) [in Russian]. 12. Lavrentiev M.A., Shabat B.V., Methods of theory of functions of a complex variable. M. Nauka, 1973. 736 [in Russian]. 13. Petryk M., Vorobiev E. Liquid Flowing from Porous particles During the Pressing of Biological Materials. Computer & Chem. Eng. Elsevier Irland, Issue 31, 1336 – 1345 (2007). 14. Lecler S., Petryk M., Canet D., Fraissard J. Competitive Diffusion of Gases in a Zeolite Using Proton NMR and Sclice Selection Procedure. Catalysis Today, Elsevier B.V. Volume 187, Issue 1, 104 – 107 (2012). 15. M. Petryk, S. Leclerc, D. Canet, I. Sergienko, V. Deineka, J. Fraissard, Competitive Diffusion of Gases in a Zeolite Bed: NMR and Slice Selection Procedure, Modeling, and Parameter Identification. J. Phys. Chem. C, 2015. 119: 47. https://doi.org/10.1021/acs.jpcc.5b07974 |
|
Rights |
© Тернопільський національний технічний університет імені Івана Пулюя, 2017
|
|
Format |
145-152
8 |
|
Coverage |
Тернопіль
Ternopil |
|
Publisher |
ТНТУ
TNTU |
|