PHASE TRANSFORMATIONS AND MECHANICAL PROPERTIES OF THE NITINOL ALLOY WITH SHAPE MEMORY
DSpace at Ternopil State Ivan Puluj Technical University
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
PHASE TRANSFORMATIONS AND MECHANICAL PROPERTIES OF THE NITINOL ALLOY WITH SHAPE MEMORY
|
|
Creator |
Iasnii, Volodymyr
Junga, Robert |
|
Contributor |
ernopil Ivan Puluj National Technical University, Faculty of Engineering of Machines, Structures and Technologies, Ruska str., 56, Ternopil, 46001, Ukraine
Politechnika Opolska, Opole, Poland |
|
Subject |
Ni–Ti alloy, temperatures of phase transformations, stress-strain diagram, scaling factor
|
|
Description |
We study the Ni55.8Ti44.2 alloy in the form of rods 8 mm and wires 1.5 mm in diameter. By the method of differential scanning calorimetry, we find the temperatures of phase transformations different for the rods and the wires. The stresses corresponding to the onset and termination of phase transformations at room temperature are determined. We also analyze the influence of the diameters of specimens on thetemperatures of phase transformations, deformation of behavior of the alloy, and its mechanical charac-teristics.
|
|
Date |
2019-07-05T15:23:32Z
2019-07-05T15:23:32Z 2018-11 |
|
Type |
Article
|
|
Identifier |
V. Iasnii, R. Junga. Phase transformations and mechanical properties of the nitinol alloy with shape memory // Materials Science. – 2018. – 54, № 3. – pp. 406–411.
1573-885X http://elartu.tntu.edu.ua/handle/lib/28687 0.1007/s11003-018-0199-7 |
|
Language |
en
|
|
Relation |
https://link.springer.com/article/10.1007/s11003-018-0199-7
1. S. Miyazaki, S. Kimura, F. Takei, T. Miura, K. Otsuka, and Y. Suzuki, “Shape memory effect and pseudoelasticity in a TiNi single crystal,” Scr. Metall.,17, No. 9, 1057–1062 (1983). 2. O. S. Onyshko, “Modeling of the physicomechanical behavior of bodies made of alloys with shape memory in the presence of elec-tric fields, Mater. Sci.,53, No. 4, 541–547 (2018). 3. H. Ma and C. Cho, “Feasibility study on a superelastic SMA damper with recentering capability,” Mater. Sci. Eng. A,473, Nos.1–2, 290–296 (2008). 4. P. Yasniy, M. Kolisnyk, O. Kononchuk, and V. Iasnii, “Calculation of constructive parameters of SMA damper,” Sci. J. TNTU,88, No. 4, 7–15 (2017). 5. J. A. Shaw and S. Kyriakides, “Thermomechanical aspects of NiTi,” J. Mech. Phys. Solids,43, No. 8, 1243–1281 (1995). 6. L. V. Bazyuk and N. V. Meshcheryakova, “Methods for the determination of the enthalpy of metals and alloys (a survey),” Visn. Prykarpat. Nats. Univ. Stefanyka, Ser. Khim., No. 11, 81–89 (2011) 7. K. V. Kodre, S. R. Attarde, P. R. Yendhe, R. Y. Patil, and V. U. Barge, “Differential scanning calorimetry: A review,” Res. Rev. J. Pharm. Anal.,3, No. 3, 11–22 (2014). 8. V. Iasnii, V. Brevus, and P. Marushchak, “A method and some results of studies of slow deformation and fracture of heat-resistant steel,” Visn. TNTU,69, No. 1, 7–13 (2013). 9. ASTM F2516-14. Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials, ASTM International, Con-shohocken (2014). 10. Introduction to Nitinol, Memry Corporation, Bethel–Menlo Park–New Hartford (2017). 11. V. Torra, S. Casciati, and M. Vece, “Shape memory alloys wires: from small to medium diameter,” Adv. Sci. Technol. Trans. Tech. Publ.,101, 79–88 (2016). |
|
Format |
406-411
|
|
Publisher |
Springer US
|
|