Запис Детальніше

Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading: an experimental study

DSpace at Ternopil State Ivan Puluj Technical University

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading: an experimental study
 
Creator Iasnii, Volodymyr
Yasniy, Petro
 
Contributor Department of Structural Mechanics, Ternopil Ivan Puluj National Technical University,Ruska str. 56,46001, Ternopil, Ukraine
 
Subject pseudoelastic alloy,functional properties,dissipation energy,strain range,stress range
 
Description The influence of the cyclic loading on the functional properties of NiTi was studied. Cylindrical specimens with adiameter of 4 mm and a gage length of 12.5 mm were tested under uniaxial cyclic loading with control crosshead displacement ata temperatureof 0°С. The dependences of the stress and strain range as well as dissipation energy on the number of loading cycles at different initialstress rangewereanalysed. During the first10loading cycles,arapid decrease inthe strainrange and energy dissipation wasobserved.Dissipation energy wasinvariant to the loading cycles’number at N > 20 cyclesand to the stressrange thatdidnot exceed the martensite finish stress level, waswithin the same scatter band and can be described by the single dependence. With the stress range growth at N < 20 cycles from 509 to 740MPa,the value of dissipation energy increases and thatof relative dissipation energy decreases.Loss coefficient,which characterises material damping ability,significantly decreases during the first 10 loading cycles and remains practically unchanged up to the failure of the specimens. At the stabilisation area,the loss coefficient is almost non-sensitive towards the stressrange.
 
Date 2019-07-05T15:49:42Z
2019-07-05T15:49:42Z
2019-06
 
Type Article
 
Identifier V. Iasnii, P. Yasniy. Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading: an experimental study. Acta Mechanica et Automatica. – 2019. –Vol. 13, No. 2. – pp. 95–100.
http://elartu.tntu.edu.ua/handle/lib/28689
10.2478/ama-2019-0013
 
Language en
 
Relation http://www.actawm.pb.edu.pl/volume/vol13no2/13_2019_011_IASNII_YASNIY.pdf
1. Abeyaratne R., Kim S.-J. (1997),Cyclic effects in shape-memory alloys: a one-dimensional continuum model,International Journal of Solids and Structures,34(25),3273-3289
2. Auricchio F., Boatti E., Conti M. (2015),SMA Biomedical Applications,Shape Memory Alloy Engineering, Chapter 11,307-341.
3. Auricchio F., Marfia S., Sacco E. (2003), Modelling of SMA materials: training and two way memory effect, Computers & Structures,81, 2301-2317.
4. ASTM F2516-14(2014),Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials.
5. Chen Q., Thouas G.A.(2015), Metallic implant biomaterials, Materials Science and Engineering: R: Reports, 87, 1-57.
6. Cheung G.S.P., Darvell B.W. (2007), Fatigue testing of a NiTi rotary instrument. Part 1: strain-life relationship, International EndodonticJournal,40(8), 612-618.
7. Eggeler G., Hornbogen E., Yawny A., Heckmann A., Wagner M. (2004), Structural and functional fatigue of NiTi shape memory alloys, Materials Science and Engineering: A,378(1-2),24-33.
8. Gamaoun F., Skhiri I., Bouraoui T., Ben Zineb T. (2014), Hydrogen effect on the austenite–martensite transformation of the cycled Ni–Ti alloy, Journal of Intelligent Materials Systems and Structures, 25(8), 980-988.
9. Hsu W.N., Polatidis E., Šmíd M., Van Petegem S., Casati N., Van Swygenhoven H. (2019), Deformation and degradation of superelastic NiTi under multiaxial loading, Acta Materialia, 167, 149-158.
10. Iasnii V., Junga R. (2018), Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory,Materials Science, 54(3),406-411.
11. Iasnii V., Nykyforchyn H., Tsyrulnyk O., Student O. (2019), Specific features of deformation of the nitinol alloy after electrolytic hydrogenation, Materials Science, 54(4), 582-588.
12. Iasnii V., Yasniy P., LapustaY., ShnitsarT.(2018), Experimental study of pseudoelastic NiTi alloy under cyclic loading, Scientific Journal of TNTU, 92(4), 7-12.
13. Isalgue A., Lovey F., Terriault P., Martorell F., Torra R., Torra V. (2006), SMA for Dampers in Civil Engineering,Materials Transactions,47(3),682–690.
14. Kan Q., Yu C., Kang G., Li J., Yan W. (2016), Experimental observations on rate-dependent cyclic deformation of superelastic NiTi shape memory alloy, Mechanics of Materials, 97, 48-58.
15. Kang G., Kan Q., Yu C., Song D., Liu Y. (2012),Whole-life transformation ratchetting and fatigue of super-elastic NiTi Alloy under uniaxial stress-controlled cyclic loading,Materials Science and Engineering: A, 535(15), 228-234.
16. Matsui R., Tobushi Y., Furuichi Y., HorikawaH.(2004),Tensile Deformation and Rotating-Bending Fatigue Properties of a Highelastic Thin Wire, a Superelastic Thin Wire, and a Superelastic Thin Tube of NiTi Alloys, Journal of Engineering Materials and Technology,126(4),384.
17. Menna C., Auricchio F., Asprone D.(2015),Shape Memory Alloy Engineering,Elsevier.
18. Mohd J., Leary M., Subic A., Gibson M.(2014),A review of shape memory alloy research, applications and opportunities,Materials & Design, 56,1078-1113.
19. Morgan N.B.(2004)Medical shape memory alloy applications -the market and its products, Materials Science and Engineering: A, 378(1-2),16-23.
20. Moumni Z., Zaki W., Maitournam H. (2009), Cyclic Behavior and Energy Approach to the Fatigue of Shape Memory Alloys,Journal of Mechanics of Materials and Structures, 4(2),395-411.
21. Nespoli A., Besseghini S., Pittaccio S., Villa E., Viscuso S.(2010),The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators.SensorsandActuators A:Physical,158, 149-160.
22. Ozbulut O.E., Hurlebaus S., Desroches R.(2011),Seismic response control using shape memory alloys: A review,Journal of Intelligent Material Systems and Structures,22(14),1531-1549.
23.Pan Q., Cho C.(2008),Damping property of shape memory alloys,The 17th International Metallurgical and Materials Conference METAL,1-5.
24. Piedboeuf M.C., Gauvin R.(1998),Damping behaviour of shape memory alloys: strain amplitude, frequency and temperature effects, Journal of Sound and Vibration, 214(5),885-901.
25. Predki W., Klönne M., Knopik A. (2006), Cyclic torsional loading of pseudoelastic NiTi shape memory alloys: Damping and fatigue failure,Materials Science and Engineering: A, 417(1-2),182-189.
26. QiuC.,Zhu S.(2017),Shake table test and numerical study of self-centering steel frame with SMA braces,Earthquake Engineering & Structural Dynamics, 46(1), 117-137.
27. Shen Y., Qian W., Abtin H., Gao Y., Haapasalo M. (2012), Effect of environment on fatigue failure of controlled memory wire nickel-titanium rotary instruments, Journal of Endodontics,38(3),376-380.
28.Sun L.,Huang W.M., Ding Z., Zhao Y., Wang C.C., Purnawali H., Tang C.(2012),Stimulus-responsive shape memory materials: A review,Materials & Design, 33,577-640.
29. Tanaka K., Nishimura F., Hayashi T., Tobushi H., Lexcellent C. (1995), Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads, Mechanics of Materials,19(4),281-292.
30. Tobushi H., Nakahara T., Shimeno Y., Hashimoto T.(1999),Low cycle fatigue of TiNi shape memory alloy and formulation of fatigue life,Journal of Engineering Materials and Technology, 122(2),186-191.
31. Torra V., Isalgue A., Auguet Sangra C., Carreras G.(2012),The SMA: An Effective Damper in Civil Engineering that Smoothes Oscillations,Materials Science Forum, 706-2015,2020-2025.
32. Yasniy P., Hlado V., HutsaylyukV., Vuherer T. (2005), Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation, Fatigue & Fracture of Engineering Materials & Structures, 28(4), 391-397.
33. Yasniy P., Kolisnyk M., Kononchuk O., Iasnii V.(2017),Calculation of constructive parameters of SMA damper,Scientific Journal of TNTU, 88(4),7-15.
 
Format 95-100
 
Coverage PL