The analysis of influence of a nozzle form of the Bernoulli gripping devices on its energy efficiency
DSpace at Ternopil State Ivan Puluj Technical University
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
The analysis of influence of a nozzle form of the Bernoulli gripping devices on its energy efficiency
|
|
Creator |
Maruschak, Pavlo
Savkiv, Volodymyr Mykhailyshyn, Roman Duchon, Frantisek Chovanec, Lubos |
|
Contributor |
Ternopil Ivan Puluj National Technical University, 56, Ruska str., 46001, Ternopil, Ukraine; mykhailyshyn@tntu.edu.ua
Slovak University of Technology in Bratislava, Ilkovičova 3, SK-812 19, Bratislava, Slovak Republic; frantisek.duchon@stuba.sk |
|
Date |
2019-07-09T06:30:45Z
2019-07-09T06:30:45Z 2019-05-28 2019-05-28 |
|
Type |
Conference Abstract
|
|
Identifier |
The analysis of influence of a nozzle form of the Bernoulli gripping devices on its energy efficiency / Pavlo Maruschak, Volodymyr Savkiv, Roman Mykhailyshyn, Frantisek Duchon, Lubos Chovanec // Proceedings of ICCPT 2019, May 28-29, 2019. — Tern. : TNTU, Scientific Publishing House “SciView”, 2019. — P. 66–74.
978-966-305-101-7 http://elartu.tntu.edu.ua/handle/lib/28694 Maruschak P., Savkiv V., Mykhailyshyn R., Duchon F., Chovanec L. (2019) The analysis of influence of a nozzle form of the Bernoulli gripping devices on its energy efficiency. Proceedings of ICCPT 2019 (Tern., May 28-29, 2019), pp. 66-74. |
|
Language |
en
|
|
Relation |
Матеріали Міжнародної науково-технічної конференції „Актуальні проблеми транспорту“, 2019
Proceedings of the 1-st International Scientific Conference "Current Problems of Transport", 2019 https://www.festo.com/net/sv_se/SupportPortal/default.aspx?cat=4564 http://www.smcworld.com/products/en/vacuum/s.do?ca_id=1036 https://www.aventics.com/en/products/pneumatic-products/vacuum-technology/non-contact-transport-sy https://www.schmalz.com/en/vacuum-technology-for-automation/vacuum-components/sp 1. Li, X.; Kagawa, T. Development of a new noncontact gripper using swirl vanes. Robotics and Computer-Integrated Manufacturing 2013, 29(1); 63-70. 2. Li, X.; Kagawa, T. Theoretical and Experimental Study of Factors Affecting the Suction Force of a Bernoulli Gripper. Journal of Engineering Mechanics 2014, 140(9). 3. Official website of Festo AG & Co, Bernoulli gripper OGGB [online cit.: 2018-01-18] Available from: https://www.festo.com/net/sv_se/SupportPortal/default.aspx?cat=4564 4. Official website of SMC [online cit.: 2018-01-18] Available from: http://www.smcworld.com/products/en/vacuum/s.do?ca_id=1036 5. Official website of Aventics. Non-contact transport system [online cit.: 2018-01-18] Available from: https://www.aventics.com/en/products/pneumatic-products/vacuum-technology/non-contact-transport-sy stem. 6. Official website of Schmalz J, Schmalz J. Floating Suction Cups SBS > Special Grippers [online cit.: 2018-01-18] Available from: https://www.schmalz.com/en/vacuum-technology-for-automation/vacuum-components/sp ecial-grippers/floating-suction-cups/floating-suction-cups-sbs. 7. Ozcelik, B.; Erzincanli, F.; Findik, F. Evaluation of handling results of various materials using a non-contact end-effector. Industrial Robot: An International Journal 2003, 30(4), 363-369. 8. Stühm, K.; Tornow, A.; Schmitt, J.; Grunau, L.; Dietrich, F.; Dröder, K. A novel gripper for battery electrodes based on the Bernoulli-principle with integrated exhaust air compensation. Procedia CIRP, 2014, 23; 161-164. 9. Contactless handling of objects [Text]: pat. 6601888 United States: Int. Cl.7: B25J 15/06 Lon McIlwraith, Andrew Christie; Assignee: Creo Inc., Burnaby (CA) – Appl. No.: 09/810408; filed 19.03.2001; date of patent 05.08.2003; priority 19.09.2002, US 2002/0130524 A1. 10. Erzincanli, F.; Sharp, J.M.; Erhal, S. Design and Operational Considerations of a Non-contact Robotic Handling System for Non-rigid materials. International Journal Machine Tools and Manufacture 1998, 38(4), 353-361. 11. Davis, S.; Gray, J.O.; Caldwell, G. An end effector based on the Bernoulli principle for handling sliced fruit and vegetables. Journal of Robotics and Computer-Integrated Manufacturing 2008, 24(2), 249-257 12. Ozcelik, B.; Erzincanli, F. A non-contact end-effector for the handling of garments. Robotica 2002, 20(4); 447-450. 13. Savkiv, V.; Mykhailyshyn, R.; Fendo, O.; Mykhailyshyn, M. Orientation Modeling of Bernoulli Gripper Device with Off-Centered Masses of the Manipulating Object. Procedia Engineering: 2017, 187; 264-271. 14. Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Mikhailishin, M. Modeling of Bernoulli gripping device orientation when manipulating objects along the arc. International Journal of Advanced Robotic Systems 2018, 15(2); doi:1729881418762670. 15. Mykhailyshyn, R.; Savkiv, V.; Duchon, F.; Koloskov, V.; Diahovchenko, I. 2018. Analysis of frontal resistance force influence during manipulation of dimensional objects. IEEE 3rd “International Conference on Intelligent Energy and Power Systems (IEPS)” 2018, pp. 301-305, doi:10.1109/IEPS.2018.8559527. 16. Mykhailyshyn, R.; Savkiv, V.; Mikhalishin, M.; Duchon, F. 2017. Experimental Research of the Manipulatiom Process by the Objects Using Bernoulli Gripping Devices. In Young Scientists Forum on Applied Physics and Engineering; 8-11, doi:10.1109/YSF.2017.8126583. 17. Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Maruschak, P.; Prentkovskis, O. 2018. Substantiation of Bernoulli Grippers Parameters at Non-Contact Transportation of Objects with a Displaced Center of Mass. Transport Means - Proceedings of the International Conference, 1370–1375. 18. Savkiv, V., Mykhailyshyn, R., Duchon, F. Gasdynamic analysis of the Bernoulli grippers interaction with the surface of flat objects with displacement of the center of mass. Vacuum, 2019, 159, 524-533, doi: 10.1016/j.vacuum.2018.11.005. 19. Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Mikhalishin, M. Energy efficiency analysis of the manipulation process by the industrial objects with the use of Bernoulli gripping devices. Journal of Electrical Engineering 2017, 68(6), 496-502. 20. Mykhailyshyn, R.; Savkiv, V.; Duchon, F.; Koloskov, V.; Diahovchenko, I. Investigation of the energy consumption on performance of handling operations taking into account parameters of the grasping system. 2018 IEEE 3rd International Conference on “Intelligent Energy and Power Systems (IEPS)”, 2018, pp. 295-300, doi:10.1109/IEPS.2018.8559586. 21. Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Fendo, O. Justification of design and parameters of Bernoulli–vacuum gripping device. International Journal of Advanced Robotic Systems 2017, 14(6), doi:1729881417741740. 22. Snegiryov, A.Y. High-performance computing in technical physics. Numerical Simulation of Turbulent Flows, S. Petersburg, Polytechnic University Publ., 2009. 23. Garbaruk, А.V. Modern approaches to modeling turbulence. Polytechnic University Publ., S. Petersburg. 24. Menter, F.R. 1994. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 2016, 32(8), 1598–1605. 25. Menter, F.R.; Smirnov, P.E.; Liu, Tao; Avancha, R. A One-Equation Local Correlation-Based Transition Model. Flow Turbulence Combust, 2015. 26. Li, X.; Li, N.; Tao, G.; Liu, H.; Kagawa, T. Experimental comparison of Bernoulli gripper and vortex gripper. International Journal of Precision Engineering and Manufacturing 2015, 16(10), 2081-2090. |
|
Rights |
© Scientific Publishing House “SciView”, 2019
© Ternopil Ivan Puluj National Technical University, 2019 |
|
Format |
66-74
9 |
|
Coverage |
28-29 травня 2019 року
May 28-29, 2019 Тернопіль Ternopil |
|
Publisher |
Scientific Publishing House “SciView”
TNTU |
|