Influence of a system “vehicle – driver – road – environment” on the energy efficiency of the vehicles with electric drive
DSpace at Ternopil State Ivan Puluj Technical University
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Influence of a system “vehicle – driver – road – environment” on the energy efficiency of the vehicles with electric drive
|
|
Creator |
Dembitskyi, Valerii
Sitovskyi, Oleg Pavliuk, Vasyl |
|
Contributor |
Lutsk National Technical University, Lvivska str., 75, Lutsk, 43000, Ukraine; dvm2@meta.ua
|
|
Date |
2019-07-09T06:30:48Z
2019-07-09T06:30:48Z 2019-05-28 2019-05-28 |
|
Type |
Conference Abstract
|
|
Identifier |
Dembitskyi V. Influence of a system “vehicle – driver – road – environment” on the energy efficiency of the vehicles with electric drive / Valerii Dembitskyi, Oleg Sitovskyi, Vasyl Pavliuk // Proceedings of ICCPT 2019, May 28-29, 2019. — Tern. : TNTU, Scientific Publishing House “SciView”, 2019. — P. 162–173.
978-966-305-101-7 http://elartu.tntu.edu.ua/handle/lib/28705 Dembitskyi V., Sitovskyi O., Pavliuk V. (2019) Influence of a system “vehicle – driver – road – environment” on the energy efficiency of the vehicles with electric drive. Proceedings of ICCPT 2019 (Tern., May 28-29, 2019), pp. 162-173. |
|
Language |
en
|
|
Relation |
Матеріали Міжнародної науково-технічної конференції „Актуальні проблеми транспорту“, 2019
Proceedings of the 1-st International Scientific Conference "Current Problems of Transport", 2019 https://doi.org/10.1016/j.trpro.2017.03.024 https://doi.org/10.1016/j.trc.2017.05.004 https://doi.org/10.1016/j.sbspro.2012.09.788 https://doi.org/10.1016/j.trc.2016.02.016 https://doi.org/10.1016/j.proeng.2011.08.1055 https://doi.org/10.1016/j.egypro.2018.09.201 https://doi.org/10.1016/j.ifacol.2018.10.100 http://www.sciencedirect.com/science/article/pii/S2405896318325631 https://doi.org/10.1177/1687814018809236 http://pubs.acs.org/doi/full/10.1021/es505621s https://doi.org/10.1016/j.jpowsour.2016.07.038 https://doi.org/10.3390/en8088573 https://doi.org/10.1016/j.egypro.2017.03.655 https://doi.org/10.1016/j.procs.2018.04.176 https://doi.org/10.1007/s12239-016-0107-9 1. Andreas Braun, Wolfgang Rid. The influence of driving patterns on energy consumption in electric car driving and the role of regenerative braking, Transportation Research Procedia, 2017; 22, 174-182, ISSN 2352-1465, https://doi.org/10.1016/j.trpro.2017.03.024. 2. Charalampos Marmaras, Erotokritos Xydas, Liana Cipcigan. Simulation of electric vehicle driver behaviour in road transport and electric power networks, Transportation Research Part C: Emerging Technologies, 2017; 80, 239-256. https://doi.org/10.1016/j.trc.2017.05.004. 3. Catarina C. Rolim, Gonçalo N. Gonçalves, Tiago L. Farias, Óscar Rodrigues. Impacts of Electric Vehicle Adoption on Driver Behavior and Environmental Performance, Procedia - Social and Behavioral Sciences, 2012; 54, 706-715. https://doi.org/10.1016/j.sbspro.2012.09.788. 4. Jun Liu, Xin Wang, Asad Khattak. Customizing driving cycles to support vehicle purchase and use decisions: Fuel economy estimation for alternative fuel vehicle users, Transportation Research Part C: Emerging Technologies, 2016; 67, 280-298. https://doi.org/10.1016/j.trc.2016.02.016. 5. Pitanuwat, S., Sripakagorn, A. An Investigation of Fuel Economy Potential of Hybrid Vehicles under Real-World Driving Conditions in Bangkok. Energy Procedia 79, 2015; 1046–1053. 6. S.H. Kamble, T.V. Mathew, G.K. Sharma. Development of real-world driving cycle: Case study of Pune, India Transportation Research Part D: Transport and Environment, 2009; 14 (2), 132-140 7. W.T. Hung, H.Y. Tong, C.P. Lee, K. Ha, L.Y. Pao. Development of a practical driving cycle construction methodology: A case study in Hong Kong Transportation Research Part D: Transport and Environment, 2007; 12(2), 115-128. 8. Qin Shi, YuBo Zheng, RunShen Wang, YouWen Li. The study of a new method of driving cycles construction, Procedia Engineering, 2011; 16, 79-87. https://doi.org/10.1016/j.proeng.2011.08.1055. 9. Ying Yang, Qing Zhang, Zhen Wang, Zeyu Chen, Xue Cai. Markov chain-based approach of the driving cycle development for electric vehicle application, Energy Procedia, 2018; 152, 502-507. https://doi.org/10.1016/j.egypro.2018.09.201. 10. Bingjiao Liu, Qin Shi, Lin He, Duoyang Qiu. A study on the construction of Hefei urban driving cycle for passenger vehicle, IFAC-PapersOnLine, 2018; 51(31), 854-858. https://doi.org/10.1016/j.ifacol.2018.10.100. http://www.sciencedirect.com/science/article/pii/S2405896318325631) 11. Du C.Q., Wang Y.H., Zhang P. Research on short trip driving cycle development based on GPS/GIS data, Journal of Wuhan University of Technology (Transportation Science & Engineering), 2016; 40(5), 803-808. 12. Nyberg P., Frisk E., Nielsen L. Using real-world driving databases to generate driving cycles with equivalence properties, IEEE Transactions on Vehicular Technology, 2016; 65(6), 4095-4105. 13. Peihong Shen, Zhiguo Zhao, Jingwei Li, Xiaowen Zhan. Development of a typical driving cycle for an intra-city hybrid electric bus with a fixed route, Transportation Research Part D: Transport and Environment, 2018; 59, 346-360. 14. Wang, Y., Zhang, N., Wu, Y., Liu, B., & Wu, Y. A strategy of electrical energy management for internal combustion engine vehicle based on driving cycle recognition and electrical load perception. Advances in Mechanical Engineering, 2018. https://doi.org/10.1177/1687814018809236. 15. Rios-Torres, J.; Liu, J.; Khattak, A. Fuel consumption for various driving styles in conventional and hybrid electric vehicles: Integrating driving cycle predictions with fuel consumption optimization. International Journal of Sustainable Transportation, 2018; 1-15. 16. Yuksel, T.; Michalek, J. Effects of Regional Temperature on Electric Vehicle Efficiency, Range and Emissions in the United States, 2015; Available online at http://pubs.acs.org/doi/full/10.1021/es505621s, visited on 22/05/2015 17. Juuso Lindgren, Peter D. Lund. Effect of extreme temperatures on battery charging and performance of electric vehicles, Journal of Power Sources, 2016; 328, 37-45, https://doi.org/10.1016/j.jpowsour.2016.07.038. 18. De Cauwer, C., Van Mierlo, J., & Coosemans, T. Energy Consumption Prediction for Electric Vehicles Based on Real-World Data. Energies, 2015; 8(8), 8573-8593. https://doi.org/10.3390/en8088573. 19. Jiang-bo Wang, Kai Liu, Toshiyuki Yamamoto, Takayuki Morikawa, 2015. Improving Estimation Accuracy for Electric Vehicle Energy Consumption Considering the Effects of Ambient Temperature, Energy Procedia, 2017; 105, 2904-2909. https://doi.org/10.1016/j.egypro.2017.03.655. 20. De Gennaro, Michele, et al. Experimental investigation of the energy efficiency of an electric vehicle in different driving conditions. SAE Technical Paper, 2014. 10.4271/2014-01-1817. 21. Hu, K., Wu, J., & Schwanen, T. 2017. Differences in Energy Consumption in Electric Vehicles: An Exploratory Real-World Study in Beijing. 22. Gennaro Nicola Bifulco & Francesco Galante & Luigi Pariota & Maria Russo Spena, A Linear. Model for the Estimation of Fuel Consumption and the Impact Evaluation of Advanced Driving Assistance Systems, Sustainability, MDPI, Open Access Journal, 2015; 7(10), 1-18. 23. Zhang Qi, Jie Yang, Ruo Jia, Fan Wang. Investigating Real-World Energy Consumption of Electric Vehicles: A Case Study of Shanghai, Procedia Computer Science, 2018; 131, 367-376, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2018.04.176. 24. S. Grubwinkler, M. Hirschvogel and M. Lienkamp. Driver- and situation-specific impact factors for the energy prediction of EVs based on crowd-sourced speed profiles, IEEE Intelligent Vehicles Symposium Proceedings, 2014; Dearborn, MI, 1069-1076. doi: 10.1109/IVS.2014.6856501. 25. Pi, JM, Bak, YS, You, YK et al. Int.J Automot. Technol, 2016. 17: 1101. https://doi.org/10.1007/s12239-016-0107-9. 26. Z. Yi; P. H. Bauer. Effects of environmental factors on electric vehicle energy consumption: a sensitivity analysis, IET Electrical Systems in Transportation, 2017; 7(1), 3-13, 3 2017. doi: 10.1049/iet-est.2016.0011. 27. Z. Yi, P.H. Bauer. Sensitivity analysis of environmental factors for electric vehicles energy consumption, Vehicle Power and Propulsion Conf. (VPPC), pp. 1-6, October 2015. 28. Asamer, Johannes, et al. Sensitivity analysis for energy demand estimation of electric vehicles. Transportation Research Part D: Transport and Environment, 2016; 46, 182-199. doi: 10.1016/j.trd.2016.03.017. 29. Evtimov, I., Ivanov, R., & Sapundjiev, M. (2017). Energy consumption of auxiliary systems of electric cars. In MATEC Web of Conferences (Vol. 133, p. 06002). EDP Sciences. doi: 10.1051/matecconf/201713306002. 30. Dembitskyi V.M., Mazylyuk P.V., Pavlyashyk S.M. Adaptation driving cycle to real traffic conditions of city buses, Naukovi notatky. Mizhvuzivsʹkyy zbirnyk (Scientific notes. Intercollegiate collection), 2018; 62, 98–102. 31. Dembitskyi V.M., Sitovskyi O.P. The possibility of using Markov chains to predict the modes of traffic of vehicles, Suchasni tekhnolohiyi v mashynobuduvanni ta transporti. Naukovyy zhurnal (Modern technologies in mechanical engineering and transport. Scientific Journal), 2017; 2 (9), 36–42. |
|
Rights |
© Scientific Publishing House “SciView”, 2019
© Ternopil Ivan Puluj National Technical University, 2019 |
|
Format |
162-173
12 |
|
Coverage |
28-29 травня 2019 року
May 28-29, 2019 Тернопіль Ternopil |
|
Publisher |
Scientific Publishing House “SciView”
TNTU |
|