Reduction of energy losses on car movement while using a combined electromechanical drive of leading wheels
DSpace at Ternopil State Ivan Puluj Technical University
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Reduction of energy losses on car movement while using a combined electromechanical drive of leading wheels
|
|
Creator |
Podrigalo, Mikhail
Abramov, Dmytro Kaіdalov, Ruslan Abramova, Tetyana |
|
Contributor |
Kharkiv National Automobile and Highway University, Yaroslava Mudrogo str., 25, 61002, Kharkiv, Ukraine; admin@khadi.kharkov.ua
National Academy of the National Guard of Ukraine, Maidan Zakhisnikiv Ukraine, 3, 61001, Kharkіv, Ukraine; mail@nangu.edu.ua Kharkiv Gymnasium 39, Kharkiv City Council Kharkiv region, Timiryazev str., 45, 61090, Kharkiv, Ukraine; gim_39@ukr.net |
|
Date |
2019-07-09T06:30:53Z
2019-07-09T06:30:53Z 2019-05-28 2019-05-28 |
|
Type |
Conference Abstract
|
|
Identifier |
Reduction of energy losses on car movement while using a combined electromechanical drive of leading wheels / Mikhail Podrigalo, Dmytro Abramov, Ruslan Kaіdalov, Tetyana Abramova // Proceedings of ICCPT 2019, May 28-29, 2019. — Tern. : TNTU, Scientific Publishing House “SciView”, 2019. — P. 294–303.
978-966-305-101-7 http://elartu.tntu.edu.ua/handle/lib/28721 Podrigalo M., Abramov D., Kaіdalov R., Abramova T. (2019) Reduction of energy losses on car movement while using a combined electromechanical drive of leading wheels. Proceedings of ICCPT 2019 (Tern., May 28-29, 2019), pp. 294-303. |
|
Language |
en
|
|
Relation |
Матеріали Міжнародної науково-технічної конференції „Актуальні проблеми транспорту“, 2019
Proceedings of the 1-st International Scientific Conference "Current Problems of Transport", 2019 1. Kaydalov, R.O. Investigation of the possibility of reducing energy losses of a car with the use of a hybrid electromechanical drive of driving wheels. Information Processing Systems 2016. Issue 9 (146), 13–17. 2. Podrigalo, M.A., Artyomov, N.P., Abramov, D.V., Shuliak, M.A. Evaluation of additional energy losses in the steady state of movement of transport and traction machines. Bulletin of the National Technical University "KPI". Series: Automobile and tractor building 2015, Kyiv, Ukraine, № 9 (1118), 98–107. ISSN 2079-0066. 3. Podrigalo, M.A., Polyansky, A.S., Podrigalo, N.M., Abramov, D.V. The effect of uneven torque of the internal combustion engine on the energy efficiency of wheeled vehicles. Railway transport of Ukraine. Scientific and practical journal 2015, Kyiv, Ukraine, №6, 40–46. ISSN 2311-4061. 4. Komarov V.V., Narbut A.N. Managing the stability of road transport systems according to safety and energy efficiency criteria. Izvestiya MSTU "MAMI" 2009, № 2 (8), 84–94. 5. Dubinin P.S., Khmelev R.N. Study of the non-uniformity of the torque and stroke of the internal combustion engine by the method of computational experiment. Alternative energy sources in the transport-technological complex: problems and prospects for rational use 2014, Voronezh, Russia, № 1, 98–101. 6. Keller A., Alyukov S.V. Power distribution in transmissions of multi-wheeled vehicles. SAE Technical Papers 2016, Volume 1103. DOI: 10.4271/2016-01-1103. 7. Lepeshkin A.V. Indicators for assessing the efficiency of transmission and conversion of energy by transmission and propulsion of wheeled vehicles. Tractors and agricultural machines 2014, Moscow, Russia, № 11, 29–35. ISSN 0321-4443. 8. Cao J., Liu H., Li P., Brown D.J. State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies. IEEE Transactions on Intelligent Transportation Systems 2008, Volume 9, № 3, 392–405. DOI: 10.1109/TITS.2008.928244. 9. Dollar R., Vahidi A. Efficient and Collision-Free Anticipative Cruise Control in Randomly Mixed Strings. IEEE Transactions on Intelligent Vehicles 2018, Volume 3, Issue 4, 439–452. DOI: 10.1109/TIV.2018.2873895. 10. Han, J.; Rios-Torres, J.; Vahidi, A.; Sciarretta, A. Impact of Model Simplification on Optimal Control of Combustion Engine and Electric Vehicles Considering Control Input Constraints. IEEE Vehicle Power and Propulsion Conference (VPPC) 2018, (August 27-30), 1–6. DOI: 10.1109/VPPC.2018.8604993. 11. Saeks, R.; Cox, C.; Neidhoefer, J.; Mays P.R., Murray J.J. Adaptive control of a hybrid electric vehicle. IEEE Transactions on Intelligent Transportation Systems 2002, Volume 3, № 4, 213–234. DOI: 10.1109/TITS.2002.804750. 12. Krasavin P.A., Smirnov A.O. On the need to control the air pressure in the tires of passenger cars, depending on the degree of their workload. Izvestiya MSTU "MAMI" 2014, Moscow, Russia, Volume 1, № 3 (21), 22–28. 13. Medveditskov S.I. Features of the behavior of a car at different air pressures in tires. News of Volgograd State Technical University 2013 . Series: land transport systems, Volgograd, Russia, Volume 6, № 7–8, 24–27. 14. Podrigalo N.M. Influence of torque irregularity on dynamic and power parameters of an internal combustion engine of wheeled cars. Scientific notes of the Crimean Engineering and Pedagogical University. Technical sciences 2013, Simferopol, Ukraine, Issue 38, 18–24. 15. Lebedev A., Artiomov N., Shuljak M., [and others]. Operating of mobile machine units system using the model of multicomponent complex movement. Automobile transport: a collection of scientific works 2015, Kharkov, Ukraine, Volume 36, 60–66. ISSN 2219-8342. 16. Bortnitsky P.I., Zadorozhny V.I. Traction speeds of cars. Vishcha shkola: Kyiv 1978; 176 p. |
|
Rights |
© Scientific Publishing House “SciView”, 2019
© Ternopil Ivan Puluj National Technical University, 2019 |
|
Format |
294-303
10 |
|
Coverage |
28-29 травня 2019 року
May 28-29, 2019 Тернопіль Ternopil |
|
Publisher |
Scientific Publishing House “SciView”
TNTU |
|